
ESM III A - lecture

Patrick Bangert

2

Chapter 1

Notation

Below are the symbols and notations used in the lecture.

Symbol Explanation
∀ for all
∃ exists
∈ in, belongs to
�∈ not in, doesn’t belong to
≡ congruent, equivalent
⇒ implies
= equals
⊂ subset, included in
& and

T / F true / false
↓ neither... nor ...
− minus, negation
∩ intersection, and
∪ union, or

Symbol Explanation
iff if and only if
∅ empty set

P(X) power set of X
× cartesian product
dom domain
ran range
◦ composition of maps
|A| number of elements in A, cardinality
xRy x is in relation with y
≤ less or equal, partial order relation
! factorial
→ if... then ...
← assignment operation
� q.e.d.

3

4 CHAPTER 1. NOTATION

axiom!of extension
Zermelo-Fraenkel
transitive
anty-symmetric
symmetric

Chapter 2

Set Theory

Axiom 1. (Axiom of extension)
Two sets are equal if and only if they have the same elements.

That is, ∀x (x ∈ a ≡ x ∈ b)⇒ a = b. First axiom of Zermelo-Fraenkel.

A ⊂ B if every element of A is an element of B, thus this includes A = B.

A ⊂ B & B ⊂ C ⇒ A ⊂ C (transitive) (2.1)

if A ⊂ B & B ⊂ A ⇒ A = B (anty-symmetric) (2.2)

A = B ≡ B = A (symmetric) (2.3)

Could formulate the Axiom of extension using anti-symmetry and os con-
venient to prove equality this way. Notation of membership on belonging
x ∈ A is basic.

Example 1. x & A are humans, we write x ∈ A if x is ancestor of A.
extension → if two humans are equal, they have the same ancestors (only
if). True. extension → if two humans have the same ancestors, they are
equal (if). False: brother & sister.
So extension makes important statement about the relation of belonging.

We may specify a set by giving a condition. Much of set theory makes new
sets from old ones. Note that:

{x ∈ A : x is married}

is not itself a married person !

A sentence is constructed by taking atomic statements and combining them
by logical connectives and proceeding by quantifiers:

5

6 CHAPTER 2. SET THEORY

axiom!of specification
Russell’s Paradox

Atomics Connectives Quantifiers

x ∈ A membership
A = B equality A ↓ B neither A nor B ∀ for all

T true

The other connectives can be defined.

F as an abbreviation for T ↓ T falsehood
−A ” A ↓ A negation
A ∩B ” −A ↓ −B and
A ∪B ” −(A ↓ B) or
A→ B ” −(A ∩ −B) if, then
A ≡ B ” (A→ B) ∩ (B → A) identity
∃ a A ” −((∀a) −A) there exists
x = y ” ∀z [(z ∈ x) ≡ (z ∈ y)] equality

The concept of a set may now be defined:

y is a set : −∀x [(x ∈ y) ≡ (x = y)] (2.4)

Axiom 2. (Axiom of specification or Aussonderungs axiom)
To every set A and to every condition S(x) there corresponds a set B whose
elements are exactly those elements x of A for which S(x) holds.

Theorem 1. (Russell’s Paradox)
Nothing contains everything (or there is no universe).

Proof. Consider S(x) = not(x ∈ x). We will write x �∈ A for not(x ∈ A).
So S(x) = x �∈ x. Let b = {x ∈ A : x �∈ x}, then

∀y [y ∈ B if and only if (y ∈ A and y �∈ y)] (2.5)

If B ∈ A, then B ∈ B or B �∈ B. If B ∈ B, (2.5) leads to contradiction, but
B �∈ B leads to contradiction too.
Thus B �∈ A.
Thus there exists something, B, that does not belong to A, but A was totally
arbitrary!!! �
Remark. We need not only have a condition but also a set from which this
condition will be evaluated, i.e. a universe. Then specification makes sense.
This is Russell’s Paradox in other words. Usually it is that the set of all
sets that do not contain themselves does not belong to itself, but neither is
it absent.

2.1. OPERATIONS ON SETS 7

axiom!of existence
axiom!of pairing
empty set!existence
axiom!of unions

Thus we proceed to define furthermore requirements.

Axiom 3. There exists a set.

Axiom 4. Axiom of pairing
For any two sets, there exists a set that they both belong to.

Then we may deduce that:

Theorem 2. There exists an empty set denoted ∅.

Proof. Let
∅ = {x ∈ A : x �∈ x } (2.6)

for any set A existing by assumption. Clearly the set ∅ contains no elements
but exists. �

Theorem 3. For any two sets, there exists a set which contains both and
nothing else.

Proof. Let a and b be sets and let A be such that a ∈ A and b ∈ B.
Apply the Axiom of Specification to A with the condition

S(x) = [(x = a) ∪ (x = b)] (2.7)

where ∪ is the logical OR operation. The result is easily seen to be the set
{a, b}. �

The empty set has several nice characteristics:

1. ∅ ⊂ A for all sets A, i.e. the empty set belongs to all sets, including
itself.

2. To prove properties about the empty set we proceed by contradiction,
i.e. we prove that the conditions can not be false.

Example 2. We can prove the above statement 1:
The statement can be false only if ∅ had an element that did not belong to
A but ∅ has no element at all, and thus the statement is true.

2.1 Operations on sets

To operate on sets, we need a further assumption.

Axiom 5. (Axiom of Unions)
For every collection of sets, there exists a set that contains all the elements
that belong to at least one of the sets in the collection

8 CHAPTER 2. SET THEORY

union
intersection
disjoint
complement
Venn Diagrams
duality

Denote the collection by C, then

U = {x : x ∈ Y for some Y in C} (2.8)

This is called the union of the sets in the collection C.
Suppose C = {A, B}, then we denote U= A ∪ B, as a special case for two
sets. We could also have written A ∪B = {x : x ∈ A or x ∈ B}.

Definition 1. The intersection A ∩B of two sets is

A ∩B = {x ∈ A : x ∈ B}
and if A ∩B = ∅, the sets are called disjoint.

Definition 2. The complement of a set A relative to set B is

A − B = {x ∈ A : x �∈ B}
When we know what the universe of discourse is, we denote complementation
with respect to it by A′

Using Venn Diagrams we may display these operations like:

Figure 2.1: Universe U; complement A’, union A∪B, intersection A∩B

An important relationship between ∪ and ∩ is that known as the principle
of duality.

Principle of Duality:
Any theorem that exists with ∪ and ∩ in it, also exists with ∩ and ∪ inter-
changed.

We have seen how we can combine sets, now we need an operation to get a
large set from a single set.

2.2. ORDER IN SET THEORY 9

axiom!of powers
powerset!existence
order
ordered pair
cartesian product

Axiom 6. (Axiom of Powers)
For each set, there exists a collection of sets that contains among its elements
all the subsets of the given set.
A is a set, ∃ a set P such that if X ⊆ A, then X ∈ P.

We may limit this set to the subsets and call it the powerset of A:

P(A) = {X : X ⊂ A} (2.9)

If A has n elements, then P(A) will have 2n elements.

2.2 Order in Set Theory

Let A = {a, b, c, d}

We wish to define an order on this set. We do so by first singly taking out
the smallest element, c say, and then the ext smallest and putting then each
into a set like

C = {{c}, {c, b}, {b, c, d}, {a, b, c, d}} (2.10)

This specifies the order by giving a set of sets of elements. We denote
(a, b) = { {a}, {a, b}} and this is our notation of an ordered pair, i.e. a
precedes b in the pair (a, b).

Theorem 4. (a, b) ∈ P(P(A ∪B))

Proof. Let A and B be sets. Consider the set of all ordered pairs (a, b)
such that a ∈ A and b ∈ B. Does this set exist ?

We know that {a} ⊂ A and {b} ⊂ B. Thus we conclude that {a, b} ⊂ A∪B
and also {a} ⊂ A∪B and so both {a} and {a, b} and elements of P(A∪B)
because the powerset is the set of all subsets.

Thus (a, b) = { {a}, {a, b}} is an subset of P(A∪B) and so an element of
P(P(A ∪B)). �

We may also define the Cartesian Product of two sets:

A × B = {x : x = (a, b) for some a ∈ A, b ∈ B} (2.11)

10 CHAPTER 2. SET THEORY

relation
domain
range
refelxive

2.3 Relations

Definition 3. A set R is a relation iff each element is an ordered pair.
If (a, b) ∈ R, we write aRb.

Thus the empty set is a relation as it has no members that are not ordered
pairs.

The cartesian product A×B is also a relation, by definition.

Let A be any set and R the set (x, y) of pairs in A × A for which x = y.
The R is a relation of equality in A.

Let R be the set of pairs (x,A) in A × P(A) for which x ∈ A. This is the
relation of belonging between elements of A and subsets of A.

Definition 4. Given a relation R we define its domain and range:

dom R = {x : for some y (xRy)}

ran R = {y : for some x (xRy)}

Example 3. If R ≡ marriage and the ordered pair is written (man,woman),
then dom R = married man; ran R = married women.

Some simple properties are:

dom ∅ = ran ∅ = ∅ (2.12)

R = X × Y ⇒ dom R = X; ran R = Y (2.13)

R = equality in X ⇒ dom R = ran R = X (2.14)

R = belonging between X and P(X) ⇒ dom R = X; ran R = P(X)−{∅}
(2.15)

If R is contained in X × Y , then

dom R ⊂ X; ran R ⊂ Y (2.16)

and we say that it is a relation from X to Y . A relation from X to X is
called a relation in X.

If R is in X and:

xRx ∀x ∈ X ⇒ R is refelexive (2.17)

2.4. FUNCTIONS 11

symmetric
transitive
equivalence relation
partition
equivalence class
induced
function
surjective
onto
image
inclusion
embedding
injection
identity!map
inverse!map

xRy ⇒ yRx ⇒ R is symmetric (2.18)

xRy & yRz ⇒ xRz ⇒ R is transitive (2.19)

Definition 5. An equivalence relation is a relation in X that has all three
properties. The smallest such relation (in X) is equality and the largest is
X ×X.

Definition 6. A partition of X is a disjoint set C of non-empty subsets of
X whose union is X.

If R is an equivalence relation in X, and x ∈ X, then the set of all those
elements y ∈ X for which xRy is the equivalence class of X with respect
to R.

If R is equality, then every element is an equivalence class. If R is X ×X,
then X itself is the only equivalence class. We denote it x/R and X/R for
the set of all equivalence classes.

Given a partition C of X, we write (x X/C y) as a new relation induced by
C. If R is an equivalence relation in X, then the set of equivalence classes is
a partition of X that induces R.

If C is a partition of X, then the induced relation is an equivalence relation
whose set of equivalence classes is exactly C.

2.4 Functions

Definition 7. Given two sets X and Y , a function f is a relation with
dom f = X from (or on) X to (or into) Y such that for each x ∈ X there
is a unique y ∈ Y with (x, y) ∈ f and this unique y is denoted by f(x).
We sometimes denote the function by f : X → Y . The set of all functions
from X to Y is denoted by xY .

Example 4. X ≡ people in a city; Y ≡ addresses; f ≡ address book.

For a function f , if ran f = Y , the function is called onto or surjective .
If A ⊂ X, then f(A) is the image of A. If x ⊂ Y , the function f(x) = x is
called the inclusion, embedding, or injection map. The inclusion map
of X into X is called the identity map (relation of equality).

The inverse of a function f is denoted by f−1 and is defined as follows:

if f : X → Y then f−1 : P(y)→ P(X) such that

12 CHAPTER 2. SET THEORY

one-to-one
composite mapping
axiom!of infinity
successor set

if B ⊂ Y, f−1(B) = {x ∈ X : f(x) ∈ B} (2.20)

f is called one-to-one if it maps distinct elements to distinct elements. If
f is one-to-one, A = f−1(f(A)) but there are other cases. So what f does
can not always be undone. If f(x) = x2, then f−1(x) =

√
x does NOT work

for all x ∈ R, but would work for x ∈ I+.

Definition 8. If f : X → Y and g : Y → Z, then ran f = dom g and thus
g(f(x)) is defied for every x ∈ X. The function

h : X → Z h(x) = g(f(x))

is called the composite of g and f . We denote it by g ◦ f or gf .

If gf exists, fg does not necessarily defined as

dom f =? ran g, i.e. X =? Z

and even if
dom f = ran g (= X).

It is not not necessarily true that fg = gf , i.e. even if it exists, composition
is not always commutative.

It is, however, associative,

f : X → Y, g : Y → Z, h : Z → U, then h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.21)

2.5 Numbers

We may now define the integers (+ is called successor).

0 = ∅, 1 = 0+ = {0}, 2 = 1+ = {0, 1}, 3 = 2+ = {0, 1, 2}

Axiom 7. (Axiom of infinity)
There exists a set containing 0 and the sucessor of each of its elements.
Such a set is called a successor set.

Theorem 5. The intersection of every non-empty family of successor sets
is also a successor set.

Theorem 6. The intersection of all successor sets included r a successor
set A, is a successor set ω, which is a subset of every successor set.

Proof.
If A and B are successor sets, then so is A∩B and since (A∩B) ⊂ A, A∩B
went into the definition of ω and hence ω ⊂ (A ∩B) and so ω ⊂ B. �

2.5. NUMBERS 13

natural number
Peano Axioms
induction principle
minimality of $“omega$
recursion theorem

Remark. This is crucial. The set ω is a set that exists independently of
A. This is a deep theorem.

The axiom of extension guaranties that there is a unique successor set that is
included in every successor set. Thus ω is unique. We then define a natural
number to be a member of the unique set ω.

We get at numbers via the Peano Axioms which give the basis of the
definition of natural numbers through which we can get all other numbers
and also analysis:

1. 0 ∈ ω

2. (n ∈ ω)→ (n+ ∈ ω) where n+ = n ∪ {n}

3. [(S ⊂ ω) and (0 ∈ ω) and (n+ ∈ ω)]→ (S = ω)

4. n+ �= 0 ∀ n ∈ ω

5. [(n,m ∈ ω) and (n+ = m+)]→ (n = m)

Comments and translation into English:

1. Zero is a natural number. This is the base case for the induction to
come later.

2. If n is a natural number so is the successor. The successor is the union
of n and {n}.

3. If S is a subset of the natural numbers that contains zero and contains
the successor of every natural number, then S is ω. This is known as
the induction principle or the minimality of ω. It basically says
that ω contains only natural numbers and that all natural numbers
are reached by the successor operation, hence the names.

4. Zero is not the successor of any natural number. This is saying that
zero really is the base case for the number system.

5. If the successors are equal, the numbers are equal. This asserts that
successorship is a unique operation, a bijective function.

This statement can be proven form set theory studied so far but the
proof is not easy. It is thus not required as an axiom if one stipulates
set theory in addition.

Theorem 7. (Recursion Theorem)
If a ∈ X and f : X → X, then there exists a function u : ω → X such that
u(0) = a and

u(n+) = f(u(n)) ∀n ∈ ω
.

14 CHAPTER 2. SET THEORY

sum
product
associative
commutative
distributive
power

Remark. The proof is difficult but could be given on present knowledge.

The theorem asserts that for each function f , we can construct a function
that is given by a series of f ,

u(n+) = f(f(...u(0)...))︸ ︷︷ ︸
n+1 times

(2.22)

since n+ = 0
+ + ...+︸ ︷︷ ︸
n+1 times . This is true also for each base value a.

This is important for definitions. We define something for zero and give
a formula for the successor and it can be always be calculated. This is
definition by induction.

2.6 Arithmetic

Theorem 8. There exists a function sm : ω → ω such that

sm(0) = m, s(n+) = (sm(n))+ (2.23)

for each number n. We define sm(n) to be the sum of n and m.

Proof. By recursion theorem.

Theorem 9.

∀ k,m, n ∈ ω :
{

(k +m) + n = k + (m+ n)
k +m = m+ k

In a similar way, we may define the product of two numbers:

pm : ω → ω : pm(0) = 0, pm(n+) = pm(n) +m (2.24)

and we define pm(n)to be the product nm. Now we may prove that multi-
plication is associative, commutative and distributive:

(km)n = k(mn) (2.25)

km = mk (2.26)

k(m+ n) = km+ kn (2.27)

The power is defined just the same,

em : ω → ω : em(0) = 1, em(n+) = em(n) ·m (2.28)

and em is the power mn. In this, all the functions may be defined by inverse
functions, the system of numbers extended to negatives, rationals, reals,
complex numbers.

2.7. AXIOM OF CHOICE 15

comparable
least element
equivalent
finite set
infinite
maximal element
anti-symmetric
order!partial

Definition 9. two natural numbers are comparable if and only if n ∈
m, n = m, or m ∈ n.

Theorem 10. Any two natural numbers are comparable and exactly one of
the above conditions can hold for any two natural numbers n and m.

Theorem 11.
if m < n ⇒ m+ k < n+ k and

if k �= 0 ⇒ mk < nk

Let E be a non-empty set of natural number, then there exists a k ∈ E
such that k ≤ m for all m ∈ E, i.e. there is always a least element in any
collection of natural numbers.

Definition 10. Two sets are equivalent if and only if there exists a one-
to-one correspondence between them, this is denoted by ≈.

A set is finite if it is equivalent to some natural number and infinite oth-
erwise.

We may prove that ω is infinite, i.e. the set of all natural numbers not a
natural number itself.

If we denote the number of elements in E by |E|, then |E| is the unique
natural number equivalent to E. We may show that:

|E ∪ F | = |E|+ |F | (2.29)

|E × F | = |E||F | (2.30)

|EF | = |E||F | (2.31)

Furthermore, the union of any two finite set is also finite. If E is finite then
so is P(E), in fact

|P(E)| = 2|E| (2.32)

If E is a finite, non-empty set of natural numbers, there exists a k ∈ E such
that m ≤ k for all m ∈ E, i.e. there exists a maximal element in a finite
collection of natural numbers.

2.7 Axiom of choice

Definition 11. A relation in a set X is called anti-symmetric if ∀x, y ∈
X the condition (xRy and yRx) implies x = y.

Definition 12. A reflexive, transitive, anti-symmetric relation in X is
called a partial order in X.

16 CHAPTER 2. SET THEORY

order!total
axiom!of choice
Zorn Lemma
order! well-ordered

Example 5. Let R be denoted by ≤, then

reflexive: x ≤ x.
anti-symmetric: if x ≤ y and y ≤ x, then x = y.
transitive: if x ≤ y and y ≤ z, then x ≤ z.

But ≤ does not need to refer to numbers ! If in addition we have that either
x ≤ y or y ≤ x ∀x, y ∈ X then the ordering is called total.

The axiom of choice is a set theoretical statement that have been found
unprovable from the other axioms. Many mathematicians dispute it because
it claims the existence of something one has no recipe for constructing. Some
people like it and some do not, most are ambivalent. It comes in many
statements, here are some:

1. The cartesian product of a non-empty family of non empty sets is
non-empty.

Explain:

(a) If a set is non-empty, it has an element.

(b) If X and Y are non-empty so is X × Y .

(c) If {Xi} is a sequence of sets, then X1 ×X2 × . . .×Xn is empty if
and only if one set in {Xi} is empty.

2. If S = {Xi} a collection of sets, then there exists a set C such that it
contains exactly one element from each Xi.

Explain:

Let U = X1 × X2 × . . . × Xn. An element f ∈ U is a function with
dom f = U such that if A ∈ S, then f(A) = A.

If S is the set of all non-empty subsets of a set X such that dom f =
P(X)\{∅} such that if A ∈ dom f , f(A) = A. Thus f is simultaneous
choice of an element from each of many sets. Hence the name of the
axiom.

3. Zorn’s Lemma: If X is a partially ordered set such that every totally
ordered subset of X has an upper bound, then X contains a maximal
element.

Explain:

Let X = {1, 2, 3}. It is bounded by 4 and thus contains a maximal
element, namely 3.

Definition 13. A partially ordered set is well-ordered if every non-empty
subset has a smallest element.

2.8. PERMUTATIONS 17

induction
permutation
cycle
Heap, B.R.

Principle of transfinite induction:
If X is well-ordered and S ⊆ X and whenever x ∈ X is such that the initial
segment s(x) ∈ S, then x ∈ S; then we must have S = X.
Explain:
X = ω the set of natural numbers. If S ⊆ X and for each number for which
every lesser number belongs to S, that number belongs also, we must have
S = ω. This is the same as the induction previously but it allows for an
infinite number of steps so it must be explicitly accepted.

We may use this to show:

1. Every set can be well ordered.

2. Every well-ordered set is totally ordered.

2.8 Permutations

Definition 14. A permutation is a bijection of the elements of a set A
on A.

The number of elements is nPn if |A| = n ∈ N and nPn = n!
A permutation can be represented

ψ = {(1, x1), (2, x2) . . . (n, xn)}

=
(

1 2 . . . n
x1 x2 . . . xn

)
so that ψ(2) = x2. A permutation is a cycle over A if A = {a1, a2, . . . , an}
and

ψ =
(
a1 a2 . . . an−1 an

a2 a3 . . . an a1

)
This is a cycle of length n.

Example 6.

ψ =
(

1 2 3 4 5
2 3 4 5 1

)
has one cycle of length 2, [1,2], and one of length 3, [3,4,5].

Theorem 12. Every permutation of a finite set can be decomposed into a
composition of disjoin cycles. The order of the cycles does not matter and
the decomposition is unique up to order.

The best algorithm to generate permutations is Heap’s algorithm. [B.R.
Heap, Comp. I. G 1963, 293 - 294]

Heap:
Algorithm generates all permutations a0a1 . . . an−1 of a set {1, 2, . . . , n− 1}
using a central table cn . . . c2c1.

18 CHAPTER 2. SET THEORY

lexicographical order Theorem 13. This algorithm generates all permutations exactly once.
(It does not do so in lexical order).

for 0 ≤ j < n do
aj ← j
cj+1 ← 0

end for
k ← 1
do

visit a0a1 . . . an−1

k ← 1
while ck=k do

ck ← 0
k ← k+1

end while
if k=n then

quit loop and algorithm, we have all permutations
end if
ck ← ck+1

if k=n then
quit

end if
t ← ak

if k is odd then
j ← ck − 1

else
j ← 0

end if
ak ← aj

aj ← t
end do

2.9 Subset generation

The set [n] = {1, 2, . . . , n} has
(
n
k

)
= n!

k! (n−k)! subsets of k elements. We want
to generate all subsets in lexicographical order, i.e. 1 < 2 < 3 < ... < n.

(v1, v2, . . . , vn) < (ω1, ω2, . . . , ωn) iff ∃ k ≤ n

such that vi = ωi ∀1 ≤ i < k and vk < ωk (2.33)

⇒ (1, 2, 3) < (1, 3, 2)

2.9. SUBSET GENERATION 19

rankThis algorithm generates all k-element subsets of [n] in this order:

for i← 1 to k do
vi ← i

end for
vk+1 ← n+1
while v1 < n-k+1 do

OutPut(v)
j ← 0
do

vj+1 ≤ vj + 1
while j ← j+1

end while
for i← 1 to j − 1 do

vi ← i

end for

Since we are generating them in order, we can number the subsets. This
number is the rank . To get subsets given their rank is the unrank procedure.

Rank(v1, v2, . . . , vn)
R← 0
for i← 1 to k do do

R← R+
(
vi−1

i

)
end for
output(R)

We want the subsets of
[vk − 1] and by some others
before it in the lexicograph-
ical order, Rank(v1 . . . vk) =(
vk−1

k

)
+Rank(v1 . . . vk−1).

Unrank(m)
for i← k down to 1 do

p← i− 1
while

(
p
i

)
≤ m do

p← p+ 1
end while
m← m−

(
p−1

i

)
vi ← p

end for
output(v)

This is simply turns ranking around.

20 CHAPTER 2. SET THEORY

integer partition
Ferrer diagram
Young diagram
row

2.10 Integer Partitioning

An integer n can be partitioned into λ = (λ1, λ2, . . . , λk) if

λ1 + λ2 + · · ·+ λk = n and λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1. (2.34)

Example 7. λ = (4, 2, 2, 2, 1, 1) is a partition of 12 to 6 parts. We also
denote this by 412312.

We can denote this graphically by Ferrer’s diagram or Young’s diagram
The largest part is the top row and so on...

412312 ≡

The conjugate partition is when the diagram is rotated by 90◦.

conj (412312) = 614112

We want to generate all partitions of a given n.
Let’s generate them in reverse lex ordering:

7, 61, 52, 512, 43, 421, 413, 321,

322, 3212, 314, 231, 223, 2213, 215, 17.

In the algorithm we will use p = (p1, p2, . . . , pk) to denote the parts and
m = (m1,m2, . . . ,mk) to denote their multiplicities.

Thus p = (4, 2, 1) and m = (1, 2, 3) means 412312.

Given a partition, we find the smallest part not equal to 1. then we use this
parti pi and all the 1’s to make as many copies of pi−1 as possible.

Example 8. 54214 and so pi = 4 and we change the 4 and the two 1’s into
32 and the remaining two 1’s into a 2 so that the next partition is 54322.

Here is the algorithm:

2.11. GRAY CODES 21

p1 ← n
m1 ← 1
r ← 1
done ← false
while not done do

output(p)
if pr > 1 or r > 1 then

if pr = 1 then
s← pr−1 +mr

k ← r − 1
else

s← pr

k ← r
end if
ω ← pk − 1
u← �s/ω� // the floor function � �
v ← s mod ω
mk ← mk−1

if mk = 0 then
q ← k

else
q ← k + 1

end if
mq ← u
pq ← ω
if v=0 then

r ← q

else
mq ← 1
pq+1 ← v
r ← q + 1

end if
else

done ← true
end if

end while

2.11 Gray Codes

We have generated the subsets of size k so far. What if we want all subsets
? We can represent this by a binary string of length n. For example let n=3
and a subset is 1,2; we denote this by (1,1,0).

22 CHAPTER 2. SET THEORY

Gray Code
Gray Code!binary
Gray code!binary

reflected

We can generate this in the order of binary numbers or by swapping one
bit. The later way turns useful in many applications and is called the Gray
code.

Example 9. Let n = 3

Bit Counting Gray Code

Subset Vector Subset Vector

{} (0,0,0) {} (0,0,0)
{3} (0,0,1) {3} (0,0,1)
{2} (0,1,0) {2,3} (0,1,1)
{2,3} (0,1,1) {2} (0,1,0)
{1} (1,0,0) {1,2} (1,1,0)
{1,3} (1,0,1) {1,2,3} (1,1,1)
{1,2} (1,1,0) {1,3} (1,0,1)
{1,2,3} (1,1,1) {1} (1,0,0)

Gray Codes are used for example by genetic algorithms to generate muta-
tions. This is preferred because each successive piece differs from its ancestor
by only one move and thus prevents genetic explosion.

Frank Gray patented this idea in 1953 for a pulse code modulation (PCM)
transmission of data signals. The binary Gray Code uses 2n numbers for
n digits. The two digit code has 00,01,10,11.

To be used practically, we want:
(1). Rules for formation of the code should apply to all natural numbers
(2). There should be simple translation rules from code to numbers and
vice-versa.
The simplest such code is the binary reflected Gray code:

1. The one digit code is 0,1.

2. To generate the n-digit code from the n-1 digit code do:

• Reflect the code and append it.
• Prepend 0 to the first half and 1 to the second.

Example 10. We start with 0, 1. We reflect (1,0) and append it to get
0, 1, 1, 0. Then we prepend 0 and 1 to the respective halves of the code
resulting in 00, 01, 11, 10, the n=2 code.

The components of a binary reflected Gray code may be visually arranged
on the corners of a hypercube of dimension n. Gray codes on a different
number basis (nor binary) can be viewed as Hamiltonian paths on a lattice
- see Martin Gardner.
Any path that visits each corner exactly once (Hamiltonian path) is a valid
binary Gray code. We have:

2.11. GRAY CODES 23

towers of Hanoin = 1

0 1

n = 2

01

00

01

01

n = 3

000 001

010 011

100 101

110 111

Figure 2.2: The unit cube is drawn and then the Gray code values are simply
the coordinate vectors of the corner points

n # Hamiltonian Cycles # Hamiltonian paths
(non-cyclic)

1 2 0
2 8 0
3 96 48
4 43008 48384
5 58018928640 187499658240

Cycles mean that the terminal node is adjacent to the starting one. Those
numbers count a path and its reversal separately. The numbers for n > 5
are unknown because so far they can only be found by enumerating them
all. This is a serious research problem - find a formula or even bounds for
these numbers.

Let’s solve two popular problems using Gray codes.

The Towers of Hanoi :
We have three pegs and n disks of pairwise distinct radius stacked on one
peg in order from longest on the bottom to smallest at top. We are to move
the whole stack to another peg accordingly to the rules:

1. We must only move one disk at a time.

2. At no time is a longer disk allowed to reside over a lower one.

Solution
Label the disks A, B, C . . . from smallest to largest. Construct the binary
reflected Gray code on n digits an write them in a column. For each digit in
the stack of Gray code element name it from right to left by A, B, C

24 CHAPTER 2. SET THEORY

Chinese-Ring Puzzle

Figure 2.3: Starting position for Towers of Hanoi

Interpret this moving that disk for which the corresponding Gray code bit
changed. The rules assume that you can only move the disk to one place
(except the first). So for n = 3 we have:

C B A Disk Moved
0 0 0
0 0 1 A
0 1 1 B
0 1 0 A
1 1 0 C
1 1 1 A
1 0 1 B
1 0 0 A

This solution is exactly 2n−1 steps long which can be shown to be minimum
possible.

The Chinese-Ring Puzzle
The initial position of the puzzle with n = 5 rings is shown in the diagram.
We are to remove all n rings from the stick subject to the rule:

1. The first ring may be put on or be removed at free will.

2. The (n+ 1)th ring may be put on or be removed if and only if the nth

ring is on, and the 1, 2, ..., n− 1 rings are all off.

Solution
We construct a n-digit binary reflected Gray code and interpret each bit as
the ring being on or off depending on whether the bit is equal to 1 or 0
respectively.

if n is the number of rings, the number of moves necessarily made is:

N =
{

1
3(2n+1 − 2) : n even
1
3(2n+1 − 2) : n odd

2.11. GRAY CODES 25

If however, we are allowed to solve the puzzle the ”fast” way in which we
are allowed to move the first two rings as a unit as well as individually, then:

N =
{

2n−1 − 1 : n even
2n−1 : n odd

The ratio of slow to fast converges rapidly to 4
3 .

Jesse Watson constructed the ”maximum effort” puzzle in which the initial
position is not 11...11, but 00...001, i.e. all the rings off except the last one.
This requires more moves than any starting position. If the slow method is
used, we need 2n − 1 moves.

Gray codes can be used to solve (to mention a few):

• more puzzles :

Martin Gardner ”The binary Gray Code”, in ”Knotted Doughnuts
and other mathematical entertainments” F.H. Freeman and Co., NY,
1986.

• analog-digital connectors

• hypercubes :

F.Gilbert ”Gray codes and paths on the n-cube”, Ball System Tech.
I. 37(1998) 815-826.

• Cayly graphs of Coxeter groups:

I.Conway, N.Sloane, A.Wilks ”Gray codes and reflection groups” Graphs
and Combinatorics 5(1989) 315 -325.

• Capanology, Bell-ringing:

A.White ”Ringing the Cosets” Amer. MAth. Monthly 94(1987) 721-
746.

• cont. space, filling curves:

W.Gilbert ”A cube filling Hilbert curve” Math. Intels. 6(1984) 78.

• classification of Venn Diagrams:

F.Ruskey ”A survey of Venn Diagrams” Elec.I. of Combinatorics (1997).

• communication codes

• increase spectrometer resolution (CODACON at LASP Univ. of
Colorado for satellite application).

Here is how to generate the N-ary code (as opposed to the binary discussed
here): M.C. Er ”On generating N-ary reflected Gray codes”, IEEE Trans-
actions on Computers 33(1984) 739-741.

26 CHAPTER 2. SET THEORY

set cover
hitting set
set packing
dual

2.12 Set Covering and Packing

We are given a set S of subsets of a universal set U .

U = {1, 2, ..., n}; S = {S1, S2, ..., Sm}

with Si ⊆ U ∀i : 1 ≤ i ≤ m. We ask the following questions:

1. A set cover T is the smallest subset of S such that ∪|T |
i=1Ti = U .

2. A hitting set H is the smallest subset of U such that each Si contains
at least one element of H.

3. A set packing P is the largest set of mutually disjoint subsets of S.

Example 11. Suppose U = {1, 2, 3, 4, 5, 6, 7, 8, 9},

S1 = {1, 2} S2 = {4, 5, 7, 8}

S3 = {1, 2, 3, 4, 5, 6} S4 = {6, 7, 8, 9}
S5 = {3, 6, 9} S = {S1,S2,S3,S4,S5}

⇒ T = {S3,S4} & H = {2, 6, 7} & P = {S1,S2,S5}
This is much easier graphically:

Cover={S3,S4}
Packing={S1,S2,S5}
Hitting set={2, 6, 7}

Definition 15. The dual of a set problem is obtained by replacing each
element of U by the set of all sets Si that contain this element of U . We see
that thus U and S have exchanged roles.

Theorem 14. The hitting set is dual to the set cover.

2.12. SET COVERING AND PACKING 27

set!partitionRemark.

If a problem Π2 is dual to a problem Π1, then any algorithm for Π1 solves
Π2. Thus we will be discussing only set cover and packing.

Theorem 15. Set cover and packing are NP - complete.

Note the fundamental difference is that a packing need not all elements of
U whereas a cover does, but may include any element more than once. A
packing that omits no single element is called a set partition . Moreover,
one is a minimum problem and the other is a maximization problem. Note
also that packing and cover always have a solution but partition does not !

Let’s reformulate the problems a bit. Let A = [aij] be a matrix (n x m) such
that rows correspond to elements of U and columns to elements of S and
aij = 1 if i ∈ Sj and aij = 0 otherwise. In addition we let c = [cj] be a cost
vector, i.e. every set Sj is allowed to cost or make a profit. Furthermore let
e = [ej] be the vector of 1’s. Then,

• packing : maximize profit by max(cTx) : Ax ≤ e

• partition : minimize cost by min(cTx) : Ax = e

• cover : minimize cost by min(cTx) : Ax ≥ e

∀xj = 0 or 1 and 1 ≤ j ≤ m, where xj decides whether to include set Sj or
not.

Theorem 16.

(1) min(cT : Ax = e, xj = 0 or 1) = −Nn+ min(cT : Ax ≥ e, xj = 0 or 1)

(2) min(cT : Ax = e, xj = 0 or 1) = −Nn+ min(c̃T : Ax ≤ e, xj = 0 or 1)

where 1 ≤ j ≤ m; cT = cT + NeTAj; c̃T = NeTA − cT and N is some
sufficiently large integer.

Corollary 1. Set partition can be brought into the form of set cover.

Corollary 2. Set partition can be brought into the form of set packing.

Theorem 17. Set packing can be brought into the form of set partition (i.e.
it is a special case of a set partition).

Why do we want to do this ? Here are a few applications.
Airline crew scheduling:
We need to schedule planes, fights and cabin crew such that constrains are
met. We assume that the plane schedule is done and are concerned with
assigning crew to planes. And since every plane has to have a crew and no

28 CHAPTER 2. SET THEORY

greedy
Chratal Algorithm

crew member can be on two planes at the same time, we have a set partition
problem. Airlines also want costs to be low !

Delivery problem:
We have a warehouse of goods and customers to deliver them to. Find
the minimum cost transportation schedule to do this. This is a set cover
problem between the sets of orders and the stock in the warehouse.

Switching circuit:
We are given a set of k input bits and one output which depends only on a
function of the 2k input vectors (everything is in binary) and also a table
giving the output for each input vector. Construct the cheapest circuit with
only AND and OR gates, i.e. the one with fewest gates. This equivalently
asks for the simplest disjunctive normal form equivalent to a given formula
in Boolean algebra.

Fault - testing:
A person can detect a fault only if they meet it. Finding the faults in a
network requires many walks and so find an optional family of paths between
specified nodes that cover the network.
This is a graph problem and it is solved by first finding a maximum matching
in the graph and then adding arbitrary edges to cover the remaining vertices.

the best way to solve the cover problem is via a greedy heuristic algorithm:

Chrátal’s Algorithm:
(V.Chrátal ”A Greedy Heuristic for the set covering problem” Math. oper.
Res. 4(1979) 233-235).

cover ← ∅
do until all Sj are empty

find a set Pk maximizing hk/ck where hk = |Sk|
cover ← cover ∪ {k}
for all nonempty Sj do

Sj ← Sj − Sk

end for
end do

In other words, we choose the set of most elements per unit cost to include
first. Chrátal proved that this gives the cover exceeding the cost of an
optimal cover by at most a factor

d∑
j=1

1
j

where d is the size of the largest Sj .

2.12. SET COVERING AND PACKING 29

Bar-Yeuda and Even
algorithm

This sweeps through the entire input instance at each step. Using linked
lists and bounded-height priority guess, we can implement this algorithm is
O(S) were

S′ = |S1|+ |S2|+ · · ·+ |Sm|
This algorithm gives a cover that uses at most ln(n) times as many sets as
optimal. There exists another good algorithm.

Bar-Yehuda and Even:
(R.Bar-Yehuda and S.Even ”A Linear-Time Approximation Algorithm for
the Weighted Vertex Cover Problem” J. Algorithms 2(1981) 198-203)

Q← U , the universal set
cover ← ∅
for 1 ≤ j ≤ m do

c
′
j ← cj

end for
do until Q = ∅

let i ∈ Q ∗

r ← min(c
′
l : l ∈ Si)

let k be such that c
′
k = r

for all l ∈ Si do
c
′
l ← c

′
l − r

end for
cover ← cover ∪{k}
Q← Q− Pk

end do

∗ Augmenting heuristics with some exhaustive search or randomization is
likely to give better results at the cost of higher run time. Choosing the i
here is the right place. ∗

This algorithm selects the set of minimal cost. It can be shown that the
resultant cover has at most the cost

f = max({|Si| : i ∈ U})

times the optimal cover cost. This usually is worse than the previous al-
gorithm but not bad for the vertex covering problem in graph theory (for
which f=2, the subsets Si being the edges).
For set packing we apply essentially the same heuristics only
1. If we want a packing with many sets , we repeatedly choose the smallest
set and delete those that clash with it.
2. If we want a packing with few sets, we repeatedly choose the largest set
and delete those that clash with it.

30 CHAPTER 2. SET THEORY

Euler’s Konigsberg
bridge problem

Chapter 3

A Graph-theoretical
Beginning

3.1 History of Graph Theory

Leonard Euler lived in Königsberg, Prussia (now Kalinigrad, Russia) and
heard of the bridge problem:

The task is to start anywhere on one piece of land (A, B, C or D) and come
back there crossing each bridge exactly once.

We may model this situation by representing each piece of land by a dot
and each bridge by a line:

31

32 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

The answer is that it is not possible to start at any node and cross each edge
only once and return to the starting node. The argument brought forward
by Euler in 1736 is:

Every region (node) has to be entered and exited an integer number of times
for the condition to hold. Thus the number of edges incident on a node has
to be an even integer. This is not the case in this graph.

If we do not require the terminal and starting nodes to be identical, it is
possible if exactly two nodes have an odd number of edges incident on them.
Those two are then the ends of the path.

This is the first graph theoretical problem stated and solved. Many other
many other questions can be asked and solved in a similar way. Part of the
beauty is that the expected background material is virtually nothing and so
the subject can be learnt very quickly.

We proceed to outline the connection between graphs and sets.

3.2 Graphs as Relations on Sets

A relation looks like:

3.2. GRAPHS AS RELATIONS ON SETS 33

identity!relation
universal!relation
graph

In general a relation is between subsets of A and B.
Given a set, we define the identity and universal relations as:

IA = { (a, a) : a ∈ A } (3.1)

UA = { (a, b) : a ∈ A } = A×A (3.2)

Those relations can be displayed graphically. Take the set

X = {a, b, c, d, e} R = {(a, b), (a, c), (b, d), (c, e), (e, b)}

Let’s try to draw IX , UX and R in various ways.

The simplest diagram is
to draw relations like a
function on a cartesian
plot.
The horizontal axis is
the domain and the ver-
tical axis is the range.
We put a dot at a co-
ordinate point if this or-
dered pair is in the rela-
tion.
This shows very little
structure in the relation
and we will not use this
method.

Based on the same idea we can draw arrows from the elements of the domain
to the element of the range for each ordered pair, both for perpendicular
and parallel axes but both are useful for very small relations because we
get too many arrows.

We get much more flexibility when we draw a node for each element and
draw arrows between them for each ordered pair somewhere in the plane.
This gives us the freedom to make use of some symmetry of the relation, if
any. This will be called graph .

Thus a graph is a graphical representation of a relation of a set into itself.

34 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

Friendship Graph
directed
loop
weight
path
connected

3.3 Graph Questions

The Friendship Graph in the graph of the set of people to itself with
arrows drawn between friends. We may ask some basic questions in this
language which we can ask then about any graph.

1. Is the graph directed ? A graph is directed if some edges cannot be
traversed both ways, i.e. some edges have arrows. Here this means: if
I am your friend, are you my friend ?

2. Are there loops ? A loop is an edge that connects a node to itself.
Here this means, am I my own friend ?

3. Are there multiedges ? A multiedge is an collection of more than one
edge each of which have the same starting and ending vertices. Here
this means, can I be your friend more than once ?

4. Are the edges weighted ? A weight is a real number associated to an
edge. Here this means, on some scale, how close a friend to you am I
?

5. Is there a path from one node to the another ? A path is a sequence
of edges such that the second node of the first edge is equal to the
first node of the second edge. Here this means, is there a sequence of
friendships that leads me to person X ?

6. Is the graph connected ? A graph is connected if any two nodes are
linked by a path. Here this means that any two people have a sequence

3.4. GRAPH REPRESENTATIONS 35

degree
clique
cycle
simple cycle
girth
Hamiltonian cycle
tree
forrest

of friends linking them.

7. What is the degree of the node ? The degree of a node is the number
of edges incident on it. This asks, how many friends do you have ?

8. Is there a clique ? A clique is a set of nodes such that an edge runs
from every member to any other member. So this asks, is there a
group of mutual friends ?

9. Is there a cycle ? A cycle is a path whose endpoints are identical. So
this asks how loy gossip returns to the instigator.

A cycle with no repeated vertices is a simple cycle . The number of edges
in the shortest cycle is the graph’s girth . A simple cycle through all the
vertices is a Hamiltonian cycle . An unidirected graph with no cycles is
a tree if it is connected and a forrest otherwise.

3.4 Graph Representations

How do we represent a graph in such a way that we can work with it by
computerized means ? There are two popular ways: adjacency matrices and
adjacency lists.

Suppose there are n nodes, then the adjacency matrix Mij is an n x n matrix
such that:

Mij =
{

1 , if (i, j) is an edge
0 , otherwise

An adjacency list contains a list of n items each of which list the nodes
incident on that node.

Example 12. A partially directed graph.

M =

0 1 1 1
0 0 0 0
1 0 0 1
1 0 1 0

1→ 2→ 3→ 4→ |||
↪→ 2→ |||
↪→ 3→ 1→ 4→ |||
↪→ 4→ 3→ 1→ |||
↪→ |||

That M12 �= M21 reflects the directed edge; the list includes this possibility
too.

Lists are almost always the way to go in practice even though matrices are
easier for theoretical work. Lists are faster and use less memory. They are
a good motivation for plentiful pointer programming.

36 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

queue
breadth first search
stack
depth first search
breadth first search

3.5 Graph Traversal

We would like to have an efficient method to walk through the graph to visit
every vertex in order to, for example:

1. print out or validate the information

2. copy the graph or convert to another representation

3. count edges/vertices

4. find paths/cycles if any

5. identify connected components

This is done as follows. Each vertex is marked as one of the three possibili-
ties:

1. undiscovered

2. discovered (but not fully explored)

3. completely explored

The labels are given in that order. Initially we discover a single vertex and
then proceed. We may proceed with the vertices in two ways:

Queue - Stack vertices in a FIFO (first in first out) so that we explore old
vertices first. This is called breadth first search .

Stack - Store vertices in a LIFO (last in first out) stack so that we explore
quickly away from the starting vertex. This is called depth first search .

The idea will become clear with the algorithms:

Breadth first search:

3.5. GRAPH TRAVERSAL 37

input a graph G and a starting vertex s
for each vertex U in G except s do

state[n] = undiscovered
p[n] = nil

end for
state[s]=discovered
p[s]=nil
Q = {s}
while Q �= ∅ do

u=dequeue[Q]
process vertex u as desired
for each vertex v adjacent to u do

process edge (u,v) as desired
if state[v]=undiscovered then

state[v]=discovered
p[v]=u
enqueue [Q,v]

end if
end for
state[n] = completely explored

end while

In this algorithm, Q is the queue (FIFO) and p holds the parent of a vertex.
This meets each vertex one directed edge exactly once and each undirected
edge exactly twice.

Depth first search

38 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

DFS - Graph(G)
input a graph G
for each vertex u in G do

state[u] = undiscovered
end for
for each vertex u in G do

if state[u]=undiscovered then
initialize new component, if desired
DFS[G,n]

end if
end for
DFS[G,n]
state[u] =discovered
process vertex u as desired
for each vertex v adjacent to u do

process (u,v) as desired
if state[v]=undiscovered then

p[v]=u
DFS(G,v)

end if
end for
state[u] =completely explored.

Both algorithms work only within only one component and hence the first
algorithm for DSF - Graph was given to be complete for a graph of more
than one connected component.

Example 13. Each node has exactly one parent except the first which has
no parents, the the result is a tree (that defines the shortest path from the
root node to every node in BFS).

3.6. BASIC FORMAL DEFINITIONS 39

graph
edge
end points
adjacent
loop
multiple edges
graph!simple
graph!directed
head
tail
subgraph
subgraph!induced

3.6 Basic Formal Definitions

A graph G with n vertices and m edges consists of an vertex set v(G) and
an edge set E(G),

V (G) = {v1, v2, . . . , vn}; E(G) = {e1, e2, . . . , em} (3.3)

where an edge consists of two (possibly equal) vertices called its end points
. uv denotes e = {u, v} and if uv ∈ E(G) then u and v are adjacent , which
we denote by u↔ v.

A loop is an edge whose endpoints are equal. Multiple edges are edges
that show both endpoints. A simple graph is a graph without loops or
multiple edges.

A directed graph has ordered pairs as edges. If (u, v) ∈ E(G), then u is
the head and v is the tail of the edge.

The complement G of a simple graph G is the simple. graph with vertex set
V (G) and uv ∈ E(G) if and only if uv �∈ E(G).

Example 14.

A subgraph of a graph G, is a graph H such that V (H) ⊆ V (G) and
E(H) ⊆ E(G). We denote this by H ⊆ G and say that G contains H.
An induced subgraph is such that E(H) consists of all edges of G whose
endpoints belong to V (H), we denote this by H = G[S].

40 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

graph!complete
clique
independent set
graph!bipartite
graph!k-partite
isomorphism
Petersen graph

Figure 3.1: G Figure 3.2: G

A complete graph Kn of n vertices is a simple graph in which every pair
of vertices is an edge; this is called also a clique

An independent set in a graph G is a vertex subset S ⊆ V (G) that
contains no edge of G (G[S] has no edges).

A graph G is bipartite if V (G) is the union of two disjoint sets such that
each edge consists of one vertex from each set. A graph is k-partite if V (G)
is the union of k (possibly empty) independent sets (every k-partite graph
is also a k+1 - partite).

Example 15.

Figure 3.3: complete bipartite Figure 3.4: 3-partite

3.7 Graph Equality

Definition 16. An isomorphism from G to H is a bijection f : V (G)→
V (H) such that if uv ∈ E(G) then f(u)f(v) ∈ E(H), we write G ∼= H and
say that G is isomorphic to H.

Example 16. The Petersen graph is various drawings:

3.8. GRAPH OPERATIONS 41

graph!sum
graph!union

How might we test for isomorphism ? Suppose both graphs are represented
by adjacent matrices A(G) and A(H). By definition, G ∼= H if and only if
we can apply a permutation to the rows of A(G) and the same permutation
to the columns of A(G) to obtain A(H).

Permuting like this, corresponds to a vertex relabelling:

v1, v2, . . . , vn → vπ(1), vπ(2), . . . , vπ(n)

for the permutation π.

3.8 Graph Operations

We put Kn compete graph on n vertices
Pn path on n vertices
Cn cycle on n vertices
and Kn,s or a complete bipartite graph with partite sets of size n and s.

We may ask, how many graphs of n vertices are there ? If |X| = n, then X
contains

(
n
2

)
= n(n−1)

2 unordered paths. We may include each edge so there
are

2(n
2) = 2

n(n−1)
2 (3.4)

simple graphs with n vertices. If n = 4, then there are 64 such graphs that
fall into 11 isomorphism classes. Here are those 11 classes.
Here are some operations that we can perform on graphs to get many more
graphs.

The sum of graphs G and H has two disconnected components, namely G
and H, written G+H.

The union of graphs G and H has the vertex set and the edge set

42 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

graph! disjoint union
graph!join
Reconstruction
Conjecture

articulation vertex
bridge
graph!non-trivial

It can not, at present,
be calculated how many
isomorphism classes
there are for an n
except by enumerat-
ing them. However
their number grows
exponentially.

V (G ∪H) = V (G) ∪ V (H) (3.5)

E(G ∪H) = E(G) ∪ E(H) (3.6)

The disjoint union (V (G) ∩ V (H) = ∅) is the sum.
In general mG means G+G+ · · ·+G︸ ︷︷ ︸

m times

.

The join of G and H is obtained from G+H by adding the edges

{xy : x ∈ V (G), y ∈ V (H)}
and is denoted by G ∨H.

We may also subtract a vertex. If v ∈ V (G) then G− v is the graph with

V (G− v) = V (G)− {v}; E(G− v) = E(G)− xy
for x = v and y ∈ V (G) or x ∈ V (G) and y = v.

Theorem 18. If G has V (G) such that |V (G)| ≥ 3 and at least two of
G− v1, G− v2 . . . G− vn are connected, then G is connected.

Conjecture 1. (Reconstruction Conjecture)
For every graph G with |V (G)| ≥ 3 all properties of G may be computed
from the list
G = {G− v1, G− v2, . . . , G− vn} = {G− vi : vi ∈ V (G)}
This conjecture is as yet unproved.

3.9 Articulation in Graphs

An articulation vertex or bridge is a vertex or edge respectively whose
delation increases the connected components of the graph.

Theorem 19. An edge is a bridge if and only if it belongs to no cycle.

Theorem 20. Every non-trivial graph has at least two vertices that are not
articulation vertices.

A graph is non-trivial if it contains an edge.

3.10. HANDSHAKING 43

degree
regular
k-regular
isolated vertex
order
size

3.10 Handshaking

Definition 17. The degree of a vertex v in graph G is equal to the number
of edges containing v. It is denoted by dG(v) or d(v) when it is clear what
graph we are talking about.

We denote the maximum degree in G by ∆(G) and the minimum degree by
δ(G). A graph is regular if ∆(G) = δ(G) and k-regular if ∆(G) = δ(G) =
k. An isolated vertex has degree 0.

The order of a graph G is n(G) the number of vertices and the size is e(G)
the number of edges.

Theorem 21. (Handshaking Lemma) If G is a graph, then∑
v∈V (G)

d(v) = 2e(G)

Proof. Every edge has two vertices.

Example 17. The hypercube graphs Qk.

Q1

0 1

Q2

01

00

01

01

Q3

000 001

010 011

100 101

110 111

We construct Q0 by a single isolated vertex with empty name. Given Qk−1

we construct Qk by taking two disjoint copies of Qk−1, call them A and B.
For every vertex in Qk−1 append a 0 to the name of that vertex in A ant a 1
to the name of that vertex in B, and add the edge between these two vertices.

The degree of every vertex in Qk is k and the number of vertices is 2k so∑
v∈V (Qk)

d(v) = 2kk = 2e(Qk)

⇒ e(Qk) = k2k−1

44 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

complete k-partite graph
graph!Turan

3.11 Tournaments

Seldom do two enemies have a mutual enemy but two will ally against the
third usually. Given n factions, how many pairs of enemies can there be if
no two enemies have a common enemy ?

Translated into graph theory, this asks for the maximum number of edges
in a simple n-vertex graph with no triangles (K3).

Definition 18. The complete k-partite graph G is a graph whose vertexes
can be partitioned into k sets such that u ↔ v for any u, v ∈ V (G) if and
only if u and v belong to different sets in this partition.

Thus every connected component of G is a complete graph.

When k ≥ 2, we write G = Kn1,n2...,nk
for this graph with partite sets os size

n1, n2 . . . , nk and complement Kn1 +Kn2 + · · ·+Knk
.

The Turán Tn,r is the complete r-partite graph with n vertices that has b
parts of size a+ 1 and r − b parts of size a, where

a = �n
r
� and b = n− ra.

Theorem 22. The graph Tn,r is the unique graph in the set of all simple
n-vertex graphs that have no r + 1-clique that has the maximum number of
edges.

Example 18. Let n = 17 and v = 3, then:

a = �7
3
� = 2 and b = 7− 3 ∗ 2 = 1

and thus we have 1 part of size 3 and 2 parts of size 2.

3.11. TOURNAMENTS 45

out-degree
in-degree
orientation
graph!oriented
tournament
king

Definition 19. let v be a vertex in a directed graph. The out-degree d+(v)
is the number of edges with tail v, and the in-degree d−(v) is the number
of edges with head v.

An orientation of a graph G is a di-graph D obtained from G by choosing
an orientation for each edge xy ∈ E(G), i.e. x→ y or y → x.

A oriented graph is an orientation of a simple graph, a di-graph without
loops and no two edges having the same end point.

A tournament is an oriented complete graph.

Consider a game with n teams such that each pair of teams plays exactly
once. We record the outcome by drawing a directed edge from the winner
to the looser. After it is done, the out-degree equals the number of wins for
each team. Clearly

d+(v) + d−(v) = n− 1 ∀v (3.7)

as each team played n− 1 times (no draws allowed).

A king is a vertex from which every other vertex is reachable by a path of
length at most 2.

Theorem 23. Every tournament has a king (every vertex is reachable by a
a path of length at most 2).

Thus there exists a team (king) such that it either beats team Z or beats
some team that beats team Z for every other team Z.

It is possible to prove a formula for the number of distinct tournaments for
a given n, but it is very complicated.

46 CHAPTER 3. A GRAPH-THEORETICAL BEGINNING

graph!planar

Chapter 4

Planarity

4.1 Example

In 1917, the following question appeared:
Three enemies live in three houses and each needs water, gas and electricity.
It is possible to lay the lines from the three different companies such that
they never cross to avoid confrontations ?

This asks whether K3,3 can be drawn without intersection.
In the picture below we have one crossing between B(water) and A(electricity).

We will prove later that the answer is no.

Definition 20. A planar graph is a graph which can be drawn on the
plane without self-intersections.

47

48 CHAPTER 4. PLANARITY

dual
length

4.2 Duals of Graphs

Definition 21. The dual G∗ of a graph G has one vertex for each region
that G divides the plane into and one edge between two vertices if the corre-
sponding regions are adjacent.

Note that different planar embeddings of G may yield non-isomorphic duals
!

There is a procedure (Whitney’s Z-isomorphism theorem) to compute all
duals of a planar graph.

Theorem 24. (G∗)∗ is isomorphic to G if and only if G is connected.

A statement about G turns into one about G∗ if we interchange the roles of
vertices and edges. The length of a face is the length of the walk in G that
bounds that face.

Theorem 25. If l(Fi) denotes the length of face Fi in a planar graph G,
then 2 ∗ e(G) =

∑
l

l(Fi).

4.3 Euler’s formula

Theorem 26. If a planar graph G has e edges, n vertices and f faces and
k connected components, then:

n− e+ f = k + 1

Proof. Let’s do this by induction on n. If n = 1, then all edges are loops
and each edge gives rise to one more face in addition that present originally.
Thus f = 1 + e and clearly k = 1 as n = 1 and so

1− e+ (1 + e) = 2 = k + 1 �

4.4. PLANAR GRAPH COLORING 49

vertex coloring
proper coloring

So base case of induction holds. Now add a vertex. If we don’t add an edge
we increase the vertices and components by one and the formula holds. If
we add an edge, it may be a loop or not but it will split one region into
two, and thus increase f by one and e by one and the formula holds. �
Thus all planar embeddings of G have the same number of faces, thus the
dual G∗ has f vertices even though there might be several non-isomorphic
duals.

Theorem 27. Every simple n-vertex planar graph has at most 3n−6 edges.

Proof. This is true for n = 3. For n ≥ 3 consider a graph with the
maximum number of edges. G must be connected or else we could add an
edge. Thus

n− e+ f = 2

Every face has at least 3 edges on its boundary and every edge lies on the
boundary of at most two faces. Thus 2e > 3f .

n− e+ f = 2 ⇒ 3n− 3e+ 3f = 6

⇒ 3n− 3e+ 2e ≥ 6 ⇒ e ≤ 3n− 6

Example 19. Consider K5 ⇒ n = 5; e = 10; k = 1.
A connected planar graph has at most 3n−6 edges if n ≥ 3. Here e = 10 >
3 ∗ 5− 6 and so K5 is not planar.

Consider K3,3 ⇒ n = 6; e = 9; k = 1
and we have that e = 9 < 3 ∗ 6− 6, but K3,3 contains no triangle and here
we have to have at most 2n− 4 edges.
e = 9 > 2 ∗ 6− 4, and so K3,3 is not planar.

Theorem 28. (Fary’s theorem) Every planar graph may be drawn using
only straight lines.

4.4 Planar Graph Coloring

Definition 22. A vertex coloring is a map ϕ : V (G) → C from the set
of the vertices of a graph G to the set C = [k] = {1, 2, . . . , k}.

A proper coloring is such that no two adjacent vertices receive the same
color.

This came up in history by coloring maps such that no two neighboring
countries would get the same color.

Any boundary can be represented by the edges of a graph. Then we want to
color the regions. If we construct then we are asking for a proper coloring
of the dual.

50 CHAPTER 4. PLANARITY

chromatic number The least number of colors necessary for a proper coloring of a graph is the
chromatic number of G, Chi(G).

The natural question is how many colors are at most required, i.e. over all
planar graphs what is Chi(G)?

The answer is 4. This result is known as the four color theorem and is very
important to the history of mathematics.

It was first posed to Augustus de Morgan in 1852 in the form of map color-
ing. Many people hence claimed proofs but they were all found to contain
mistakes until 1976 when Appel and Haken solved the problem. The the-
orem itself is interesting because of its simple statement and difficulty in
proving but also due to a number of practical applications we will get to
later.

What made the problem even more famous was the manner in which Appel
and Haken proved the result.

Let’s first prove the five-coloring theorem.

Theorem 29. Every planar graph G has a proper coloring using at most 5
colors.

Proof. First we argue that G contains a vertex v such that d(v) ≤ 5:

If every node had degree at least 6, then the number of edges would be at
least 3n which contradicts the fact that 3n− 6 is the most number of edges
that G can have.

Let H be a planar graph that requires at least six colors and has fewest
vertices, i.e. a node-minimal counterexample.

H has a vertex v with d(v) ≤ 5. If d(v) < 5, delete v to obtain H ′ which is
five colorable as H ′ was node minimal. We can now 5-color H from H ′ by
assigning v a color different from its neighbors and we need not use another
color since d(v) < 5.

Consider the case when d(v) = 5. Let the nodes adjacent to v be called
q1, q2, q3, q4, q5. These five may not form K5, i.e. there must be a pair
(qi, qj) which is not an edge of H. This is true because K5 is not planar and
thus would cause H to be non-planar.

We contract the edges (v, qi) and (v, qj) to obtain a five-colorable graph since
it has fewer vertices. We can use this five-coloring to 5-color H as follows:
qi and qj get that same color as the combined vertex of qi&qj&v, and v gets
the color not used in its five neighbors (there are at most 4 colors used as
two of five neighbors have the same color). �

4.4. PLANAR GRAPH COLORING 51

four-color theoremRemark. Thus we construct a five-coloring of a bigger graph from a
coloring of a smaller graph. The two cases of local coloring we looked at are
called ”unavoidable configurations”. We proved the theorem by assuming
a counter-example, showing that it contained an unavoidable configuration
and that any local five-coloring of a graph can be extended to a longer graph
through an unavoidable configuration. As we had only 2 such configurations
the proof was short.

If we want to prove that we can also produce a legal four-coloring of every
planar graph, we must go through the same arguments. The search for an
unavoidable set of configurations had to be done by computer and initially
yielded 1936 cases. these were all checked for reducibility like above and
thus constitute a proof of the four-color theorem.

This proof lead to uproar in the mathematical community as it was the first
important proof delivered by computer. It is criticized for these reasons:

1. It offers no insight into why the result is true. It merely checks a large
number of cases. Thus we learn nothing and can not extend the theory
based on it.

2. It cannot realistically be checked. Thus there is doubt about its truth.

Criticism 2 was fixed by an algorithmic proof by Appel and Haken this proof
was 741 pages long and so is not much simpler to check.

There is no proof known which does not check a large number(¿1000) of cases
even though improvements were made. This is an outstanding challenge.

We demonstrate the simplest graph that requires 4 colors, were the numbers
are to be interpreted as colors and this graph is K4 which is clearly planar.

The graph K5 is not planar and requires 5 colors. In general Kn requires n
colors.
Note that K3,3 is a 2-colorable graph as is any bipartite graph !

Next, we want to investigate when graphs are planar.

52 CHAPTER 4. PLANARITY

Kuratowski Theorem
Wagner Theorem

4.5 Planarity Results

Theorem 30. (Kuratowski’s Theorem) A graph G is planar if and only if
it contains no subdivision of K5 or K3,3.

By subdivision we mean replacing an edge by a path of length 2, i.e. intro-
ducing a new vertex.

Theorem 31. (Wagner’s theorem) Deletion and contraction of edges pre-
serves planarity.

We can seek the minimal non-planar graphs on this basis.

Unfortunately these results are not useful in actually testing (on a computer)
whether G is planar. We have to find alternate means and we want these
means to be fast.

There are many algorithms and it is typical to introduce an easy one and
refer to the harder ones but we see no point in wasting time on obviously
inferior algorithms. The algorithm by Hapcroft and Tarjan runs in linear
time and is generally the best available.

4.5. PLANARITY RESULTS 53

Data : An graph adjacency list G.
Result : A Boolean variable P which is TRUE if the graph is planar

and false otherwise.
integer E
P ← TRUE
E ← 0
for each edge of G do

E ← E + 1
if E > 3V − 3 then

P ← FALSE
return P

end
end
Divide G into biconnected components
for each biconnected component C of G do

Transform C into a palm tree T
Find a cycle c in T
Construct a planar representation for c
for each piece formed when c is deleted do

Apply this algorithm recursively to determine if the piece plus
c is planar
if piece plus c is planar and piece may be added to planar
representation then

add it
else

P ← FALSE
return P

end
end

end

Algorithm 1: Planarity Testing

For each point p added to the depth-first search tree, we compute the lowest
vertex on this tree that can be reached from descendants of p. If this lowest
vertex is not the root, then the second point (i.e. the neighbor of the root
in the depth-first search tree) is an articulation vertex and must be deleted
from the graph in order to obtain a biconnected component. We do this
until no articulation vertices remain.

54 CHAPTER 4. PLANARITY

Data : An graph adjacency list G and two vertices u and v such
that (u, v) is an edge. This procedure will be called
DFS(G,u,v). A(v) is the adjacency list of the vertex v.
This will be a depth-first search augmented with addi-
tional bits. Each vertex p is assigned a distinct integer
Np which serves as its identifier and two integers L(1)

p and
L

(2)
p which measure the low points. L(1)

p is the lowest ver-
tex below p reachable by a frond from a descendant of p
and L(2)

p is the second lowest vertex below p reachable by
a frond from a descendant of p.

Result : A list B of graph adjacency lists that are the biconnected
components of G.

integer n
n← Nv ← n+ 1
L

(1)
v ← L

(2)
v ← Nv

for w ∈ A(v) do
if Nw = 0 then

// a is a new vertex
mark (v, w) as a tree arc
DFS(G,w,v)
if L(1)

w < L
(1)
v then

L
(2)
v ← min

{
L

(1)
v , L

(2)
w

}
L

(1)
v ← L

(1)
w

else
if L(1)

v = L
(1)
w then

L
(2)
v ← min

{
L

(2)
v , L

(2)
w

}
end

end
else

L
(2)
v ← min

{
L

(2)
v , L

(1)
w

}
end

else
if Nw < Nv and w �= v then

mark (v, w) as a frond
if Nw < L

(1)
v then

L
(2)
v ← L

(1)
v

L
(1)
v ← Nw

else
if Nw > L

(1)
v then

L
(2)
v ← min

{
L

(2)
v , Nw

}
end

end
end

end
end

Algorithm 2: Division in biconnected components

4.5. PLANARITY RESULTS 55

Note that v− → w refers to v being connected to w via a frond in the
depth-first search tree. Define φ((v, w)) as a function of an edge (v, w) by

φ((v, w)) =

2w if v− → w.
2L(1)

w if v → w and L(2)
w ≥ v.

2L(1)
w + 1 if v → w and L(2)

w < v.
(4.1)

We calculate φ((v, w)) for every edge in the tree T and order the adjacency
lists according to increasing value of φ using a radix sort to achieve an
O(V + E) time bound.

Data : A list B of graph adjacency lists that are the biconnected
components of G. The Si are buckets that help with the
sorting and ∅ is the empty list.

Result : The list B of sorted graph adjacency lists.
for i← 1 to 2V + 1 do

Si ← ∅
end
for (v, w) an edge of G do

Compute φ((v, w))
add (v, w) to Sφ((v,w))

end
for v ← 1 to V do

A(v)← ∅
end
for i← 1 to 2V + 1 do

for (v, w) ∈ Si do
Add w to the end of A(v)

end
end

Algorithm 3: Sorting of adjacency lists according to φ.

Next we have to find paths in the graph. To do this we search again by
depth-first search using the newly sorted adjacency lists. Each time we
traverse an edge we add it to the path currently being constructed and each
time we traverse a frond, it becomes the last edge of the current path.

56 CHAPTER 4. PLANARITY

Data : A depth-first search tree T . This procedure is called
Pathfinder(i) where i is a vertex. Initially s is set to zero
and i to one.

Result : A list of all paths.
for w ∈ A(v) do

if v → w then
if s = 0 then

s← v
start new path

end
add (v, w) to current path
Pathfinder(w)

else
// this is reached if v− → w if s = 0 then

s← v
start new path

end
add (v, w) to current path
output current path
s← 0

end
end

Algorithm 4: Finds all paths in a depth-first search tree generated
from a biconnected graph.

Now that we know all the paths in all the biconnected components of a graph
G we must determine whether these paths can be embedded into the plane.
The idea is as follows. We attempt to embed the paths one at a time. Let c
be the first path. It consists of a set of tree edges 1→ v1 → v2 → · · · → vn

followed by a frond vn− → 1. The vertices are numbered such that 1 <
v1 < v2 < · · · < vn. When c is removed from its biconnected component,
this component falls into several pieces called segments. Each segment S
consists of a single frond (vi, w) or a tree edge (vi, w) plus a subtree with
root w plus all fronds leading from the subtree.
The order of the paths generated is such that all paths in one segment
are generated before the paths in any other segment are generated. The
segments are encountered in increasing order in vi.
By the Jordan Curve Theorem, any segment must be embedded on a single
side of c. We have the following result: A path from vi to vj may be added
to the planar embedding by placing it on the left (right) of c if and only if no
previously embedded frond (x, vk) on the left (right) satisfies vj < vk < vi.
We use this result to test for planarity as follows: First we embed c in the

4.5. PLANARITY RESULTS 57

plane. Then we embed the segments one at a time in the order they are
encountered during path finding. To embed a segment S, we find a path in
it, say p. We choose a side of c on which to embed p. We compare p with
previously embedded fronds to determine if p may be embedded. If not, we
move segments which have fronds blocking p to the other side. If p can be
embedded now, we do so. However, the movements of segments may require
other segments to be moved also and so it may be impossible to embed p. If
so, the graph is not planar. We embed the rest of S by recursion and then
embed all other segments likewise.

We are going to use three stacks to store the information. Stack L is going
to hold the vertices vk in order such that 1 → · · · → vk → · · · → vi with
1 < vk < vi and such that some embedded frond enters vk on the left. Stack
R does the same except for frond entering on the right.

The stacks must be updated in four ways:

1. After all segments starting at vi+1 have been explored and embedded,
all occurrences of vi on L and R must be deleted and future segments
start at vertices no greater than vi.

2. If p is the first path on segment S and the terminal vertex f has f > 1,
then f must be added to a stack when p is embedded. p can only be
embedded on the left (right) when every vertex on L (R) is no greater
than f . So f may be added on top of L (R).

3. The recursive application of the algorithm must add entries for other
paths in the segment S.

4. Entries must be shifted from one stack to another as the corresponding
segments are moved. Embedding a frond on the left (right) forces
fronds in the same segment to be embedded on the left (right) and
may force fronds in other segments to be embedded on the right (left).
By a block B we mean a maximal set of entries on L and R which
correspond to fronds such that the placement of any one of the fronds
determines the placement of all the others. The blocks change as the
content of the stacks change, but the blocks always partition the stack
entries.

58 CHAPTER 4. PLANARITY

Data : An graph adjacency list G. We use stacks L, R and B.
Result : A Boolean variable P which is TRUE if the graph is planar

and false otherwise.
L← R← B ← ∅
Find first cycle c
while some segment is unexplored do

Initiate search for path in next segment S
When backing down tree edge v → w delete entries on L and R
and blocks on B containing vertices no smaller than v.
Let p be the first path found in S.
while position of top block determines position of p do

delete top block from B
if block entries on left then

switch block of entries from L to R and from R to L by
switching list pointers.

end
if block still has an entry on left in conflict with p then

P ← FALSE
return P

end
end
if p is normal then

add last vertex of p to L
end
Add new block to B corresponding to p and blocks just removed
from B
Add end-of-stack marker to R
Call embedding algorithm recursively
for each new block (x, y) on B do

if (x �= 0) and (y �= 0) then
P ← FALSE
return P

end
if y �= 0 then

move entries in block to L.
end
Delete (x, y) from B.

end
Delete end-of-stack marker on R. Add one block to B to represent
S minus path p. Combine top two blocks on B

end

Algorithm 5: Checks if a biconnected graph can be embedded in the
plane.

k-connected
cut-set
connectivity
connected
biconnected
disconnected

Chapter 5

Connectivity

5.1 Basic Definitions

Definition 23. A graph G is k-connected if there does not exist a cut set
of k − 1 vertices, where a cut-set is a set S ⊆ V (G) such that G \ S is
disconnected.

The connectivity κ(G) is the minimum number of vertices, whose deletion
disconnects G, i.e. it is the maximum k such that G is k-connected.

A connected graph is 1-connected; a biconnected graph graph is 2-connected
and a disconnected graph is 0-connected.

We may offer an alternative definition: A graph is k-connected if any two of
its disjoint vertices can be joined by the k independent (i.e. disjoint) paths
in G.

The fact that this is indeed an equivalent definition is a theorem.

Theorem 32. For any graph G and u, v ∈ V (G), the minimum number of
vertices separating u from v along any path in G is equal to the maximum
number of disjoint paths from u to v in G.

The connectivity is interesting in practice because it represents the minimum
number of damages that a network can sustain and still remain functional.
This applies to electricity, water, telephone distributions and so on.

5.2 Computing κ(G)

Let us summarize the situation so far:
A k-connected graph is (k-1)-connected and may be (k+1)-connected.

59

60 CHAPTER 5. CONNECTIVITY

k-connected meaning test

0 any graph all graphs are 0-connected
1 connected depth-first search starting at any

vertex eventually reaches all
vertexes. This test is linear, i.e. it

runs in O(V (G) + E(G))
2 � ∃ articulation vertex depth-first augmented with

low-point calculation will find
all articulation vertices. In this
case, we must fail to find such a

vertex, i.e. the low-point of vertices
must be the DFS tree root vertex.

In general we may proceed as follows: If G is not connected, remove a vertex
and see if it is now disconnected. Recurse this procedure and κ(G) is the
shortest branch on recursion time. This gives my algorithm (not found in
books).

con(G, k)
if G is disconnected return k
k ← k + 1
for i← 1 to |V (G)| do

pi ← con(G− vi, k)
end for
return min(pi)

The vertex vi is removed and the function is called by con(G, 0) i.e. the

initial k must be 0. This function returns the minimum number of vertices
whose removal disconnects G. If we add bookkeeping to a (non)-recursive
or the recursive version of this, we can also find such a set by the same
algorithm.

This requires (if we put V = |V (G)|)

ε = V (V − 1)(V − 2) . . . (V − κ(G) + 1) =
V !

(V − κ(G))!
(5.1)

evaluations of the function con(G, k). So far for a given V , the most ex-
pensive calculation is V ! for the case that κ(G) = V − 1. There is a unique
graph with this property, i.e. it is KV . Every other graph (as it is missing at
least one possible edge) can be disconnected such that at least two vertices

5.3. SOME BOUNDS 61

Harary graph
Harary Theorem

remain. Note that we have adapted the convention that KV disconnects
when a single vertex remains. This is not strictly true as KV may not be
disconnected at all. We choose this convention so that other results are
consistent.

Example 20. Ki,i may be disconnected by deleting one of its partite sets X
or Y but not in any other way. Thus κ(Ki,i) = min{i, j}.

5.3 Some Bounds

Definition 24. The Harary graph Hk,k is constructed as follows:
Place n vertices in circular order on the plane and suppose k < n. If k is
even (k = 2r), we connect every r vertices and if k is odd (k = 2r + 1) we
connect every r vertices and the diagonally opposite ones.

Hk,k is k-regular (i.e. all vertices have degree k).

If k = 2r + 1 and n is odd, index the vertices by the integers mod n. We
construct Hk,k from H2r,n by adding i↔ i+ n+ 1 for 0 ≤ i ≤ n− 1.

We may prove:

Theorem 33. (Harary) κ(Hk,k) = k and so the minimum number of edges
in a k-connected graph on n vertices is �kn

2 �.

Proving κ(G) = k means showing that there exists no cut set S with |S| < k
and demonstrating one with |S| = k.
This can be done here.

In order to allow G to be k-connected, we have to have quite a few edges,
otherwise a small set of vertices could already disconnect it. So the condition

|E(G)| ≥ �k|V (G)|
2

� (5.2)

allows a graph G to be k-connected, i.e. if the condition is violated, G is
not k-connected.

62 CHAPTER 5. CONNECTIVITY

Bondy Theorem
weakly conditioned
unilaterally connected

strongly connected

Theorem 34. (Bondy) For any simple graph G with vertex degrees d1 ≤
d2 ≤ · · · ≤ dn and dj ≥ j + k whenever j ≤ n− 1− dn − k for |V (G)| = n,
then G is (k+1)-connected.

Note that connectivity of graphs is the same as simple graphs after loops and
multi-edges have been deleted. Thus for vertex degree counting arguments,
it is simpler to assume that the graph is simple.

5.4 Path Counting

Theorem 35. (Cooke & Bez) Let A be the adjacency matrix of a graph G
with |V (G)| = n, then:

1. (Ak)ij is the number of paths of length k from vi to vj.

2. ∃ a path vi → vj (i �= j) iff (A+A2 + · · ·+An−1)ij �= 0.

3. ∃ a path vi → vj iff (A+A2 + · · ·+An)ij �= 0.

We also want the connectivity matrix A∗ such that

(A∗)ij =
{

1 if ∃ a path i→ j
0 otherwise

We compute this
A∗ = I

√
A
√
A(2)√ . . .√A(n−1) (5.3)

where
√

means infinimum, and any non-zero element in Ak is set to 1 to
obtain A(k). This operation selects the lower of the two values and is applied
element-wise for the matrices. This means that A∗ will have elements 0 or
1. Clearly G is connected if and only if (A∗)ij = 1 for all i, j.

A∗ defines a partition of V (G) which is equal to the connected components
of G.

For a directed graph the situation is more complex. So suppose G is directed,
we call F (G) the graph associated to G by removing the directionality form
all the edges. Then

Definition 25. A di-graph G is:

1. weakly-conditioned if F (G) is connected.

2. unilaterally-connected if for each pair of distinct vertices n G there is
a path going between them in at least one direction.

3. strongly-connected is it is unilaterally connected un both directions.

5.5. EDGE-CONNECTIVITY 63

acyclic
DAG
disconnecting set
h-edge-connected
edge-connectivity
bridge

In terms of A∗, we have:

G is unilaterally-connected iff (A∗)ij
√

(A∗)ji = 1 ∀i �= j (5.4)

G is strongly-connected iff (A∗)ij = 1 ∀i �= j (5.5)

The graph is also acyclic if there are no cycles, i.e. if

(A∗)ij = 0 ∀i.

We call a graph a DAG if it is directed and acyclic. These graphs turn out
to be important in practice.

What remains is how to find A∗ in a an efficient way. To compute from
teh formula takes 4n4− 7n3 steps and Warshall’s algorithm takes 4n3 steps.
There are others but this is good enough.

Warshall (A)
A∗ ← A
for i← 1 to n do

for j ← 1 to n do
if (A∗)ij = 1 then

for k ← 1 to n do
if (A∗)jk then

(A∗)ik ← 1
end if

end for
end if

end for
end for
return A∗.

Algorithm 6: Warshall’s Algorithm

5.5 Edge-connectivity

Definition 26. A disconnecting set is a set E′ ∈ E(G) such that G \E′

has more than one component.

A graph is h-edge-connected if there does not exist a disconnecting set
of size k − 1. The edge-connectivity κ′(G) is the minimum size of a
disconnecting set.

This definition simply extends what we already know about vertices to edges.
A disconnecting set of size 1 has been earlier called a bridge .

64 CHAPTER 5. CONNECTIVITY

line graph We proceed as before: All graphs are 0-edge-connected and a graph that
is 1-edge-connected if it is connected. It is 2-edge-connected if there is no
bridge, etc.

We may test easily:

Definition 27. The line graph L(G) is obtained from G by making each
edge of G a vertex in L(G) and connecting two vertices if they share an
endpoint in G.

Example 21.

Theorem 36. A bridge in G is an articulation vertex in F unless the
bridge’s removal leaves a single isolated vertex.

Proof.

5.5. EDGE-CONNECTIVITY 65

Whitney’s Theorem
x,y-cut
Menger’s
Theorem!Original

Thus bridges can be found in linear time.
The important result here is Whitney’s theorem.

Theorem 37. (Whitney) κ(G) ≤ κ′(G) ≤ δ(G)

Recall that δ(G) is the minimum vertex degree in G.

We note that κ′(G) ≤ δ(G) because the edges incident on a vertex of mini-
mum degree form a disconnecting set.
Also deleting an endpoint of each edge in a disconnecting set, deletes all
edges in that set and thus κ(G) ≤ κ′(G). We have to be careful and this
carefulness leads to a proof, but these are the ideas.

Now κ(G) = δ(G) for complete graphs, complete bipartite graphs, hyper-
cubes and Harary graphs and so κ′(G) = δ(G) for these graphs also !

The case κ′(G) < δ(G) is the case when no minimum disconnecting set
disconnects a single vertex from the graph.

Example 22.
κ(G) = 1 because 3 is an articulation vertex and G is connected.
κ′(G) = 2 because G has no bridges but (2, 3) and (7, 3) disconnect G if
removed.
δ(G) = 3 as the minimum degree is 3.

Thus κ(G) < κ′(G) < δ(G) and so it is possible that the strict inequalities
hold as well as the equalities.

Definition 28. A set S ⊆ V (G)\{x, y} is an x,y-cut if G\S has no x− y
path. Let κ(x, y) be the minimum size of an x,y-cut.

The maximum number of pairwise internally-disjoint (intersecting only at
the endpoints) x,y-paths is denoted by λ(x, y).

λ(G) is the longest k such that λ(x, y) ≥ k for all x, y ∈ V (G).

Theorem 38. (Menger’s original theorem) κ(x, y) = λ(x, y).

In words: If x, y ∈ V (G) and xy �∈ E(G), then the minimum size of an x,y-
cut equals the maximum number of pairwise internally-disjoint x,y-paths.

66 CHAPTER 5. CONNECTIVITY

Menger’s
Theorem!Modern

This is a local theorem about two vertices x and y.
Naturally, we may extend it to a global version.

Theorem 39. (Modern Menger Theorem) κ(G) = λ(G).

Theorem 40. If x, y ∈ V (G), (x �= y), where G is a graph or directed
graph, then the minimum size of an x,y-disconnecting set of edges equals the
maximum number of pairwise edge-disjoint x,y-paths.

Theorem 41. κ(G) is the maximum k such that λ(x, y) ≥ k for all x, y ∈
V (G), i.e. κ(G) = λ(G).

κ′(G) is the maximum k such that λ′(x, y) = k for all x, y ∈ V (G), i.e.
κ′(G) = λ′(G).

where we define λ′(x, y) to be the maximum number of pairwise edge-disjoint
x,y-paths.

circuit
cycle
Euler circuit
Hamiltonian Cycle
Chinese Postman
Problem

Travelling Salesman
ProblemChapter 6

Circuits and Cycles

6.1 Concepts

Definition 29. A circuit is a path from a vertex v to v in which no edge
appears twice.

A cycle is a path from a vertex v to v in which no edge appears twice (except
v which appears exactly twice).

A Euler Circuit is a circuit containing every edge.

A Hamiltonian Cycle is a cycle containing vertex

The Chinese Postman Problem asks for the shortest Eulerian circuit.

The Travelling Salesman Problem asks for the shortest Hamiltonian
cycle.

If a graph is not Eulerian (Hamiltonian), then we extend the Chinese Post-
man Problem (Travelling Postman Problem) to finding the shortest path from
a vertex v to v covering all edges (vertices) at least once.

Example 23.
The Graph Eulerian Hamiltonian The circuit or cycle

G no no no circuit, no cycle
H yes yes circuit = cycle = 1→ 2→ 3→ 4→ 1
I no yes cycle = 1→ 2→ 4→ 3→ 1
J yes no circuit = 1→ 2→ 3→ 1

67

68 CHAPTER 6. CIRCUITS AND CYCLES

So any of properties is possible. It is o great practical importance to be
able to judge if a graph is Eulerian or Hamiltonian and to find the required
circuit or cycle if it exists. Some such problems are listed below:

1. Scheduling for mailman, delivery trucks, garbage trucks, snow plows,
security agents, etc. And finding the routes.

2. More examples to be added on a later date.

6.2 Shortest paths

Before we investigate these problems, we solve a related one: Given two
vertices u, v ∈ V (G), determine the shortest path between them, if any.

We start with assigning each edge a weight. We will assume that all weight
are positive integers, zero or infinity. Note that the prohibition of negative
numbers and real numbers does not matter as we can always translate the
unit in which we measure distance and the computer representation of any
number is essentially that of an integer.

The problem is easily done via the Warshall algorithm that computes the
connectivity matrix. We will give another algorithm here which is most
commonly used for this problem and is to be recommended.

Let G be a graph (possibly directed) and ω(e) the weight of edge e. The
adjacency list of vertex v is Av and the starting vertex is s. It is not
necessary to specify the terminal vertex as this procedure gives all shortest

6.2. SHORTEST PATHS 69

paths between s and every other vertex. No procedure is known which gives
the shortest path between two vertices in less complexity-time than between
any one and the others.

We first give the basic algorithm and then improve it.

Dijhstra(G,s)
d(s)← 0
T ← V (G)
for v ∈ V (G) − s do

d(v)←∞
end for
while T �= ∅ do

find a u ∈ T with d(u) minimal
T ← T − u
for v ∈ T ∩Au do

d(v)← min(d(v), d(u) + ωuv)
end for

end while

Algorithm 7: Dijhstra Algorithm

This algorithm computes d(t) which we claim is the shortest distance be-
tween s and t (that is the length of the shortest path). Note that with
some bookkeeping the actual path may be output as well. Let the actual
shortest distance be d(s, t). We want to prove that d(t) = d(s, t) to prove
the correctness of the algorithm and to try to understand it.

If we adopt the convention that d(s, t) = ∞ if there is no path between s
and t, we already have d(s, t) ≤ d(t), as d(s, t) is the minimum by definition.

Example 24. (Dijhstra)

We have a weighted digraph and want to find the shortest path between vertex
1 and the others.

70 CHAPTER 6. CIRCUITS AND CYCLES

We use Dijhstra(G,1):

1. d(1) = 0; d(i) =∞ i = 2, 3, . . . , 8; T = V ;

2. find the u in T with d(u) minimal −→ 1 with d(u) = 0;

T = {2, 3, ..., 8}
An = {2, 3, 5}
and so put d(2) = ωuv = 28; d(3) = ωuv = 2; d(5) = ωuv = 1;

3. minimal one is 5

T = {2, 3, 4, 6, 7, 8}
An = {2, 6} ⇒ d(2) = d(5) + ω25 = 9; d(6) = d(5) + ω56 = 27;

4. u = 3

T = {2, 4, 6, 8, 7} ⇒ d(6) = 26; d(8) = 29;

5. u = 2

T = {4, 6, 7, 8} ⇒ d(4) = 18; d(6) = 19;

6. u = 4

T = {6, 7, 8} ⇒ d(7) = 26; d(8) = 25;

Note that T does not contain 5 even though 5 neighbors 4.

7. u = 6

T = {7, 8} ⇒ d(8) = 20;

6.2. SHORTEST PATHS 71

8. u = 8

T = {7};

9. u = 7

T = ∅;

and thus d = (0, 9, 2, 18, 1, 19, 26, 20).

We want to show that d(t) ≤ d(s, t). We do this by induction. Consider
t = s and so d(s) = d(s, s) = 0 and the inequality holds. The induction
hypothesis will be that d(t) ≤ d(s, t) for all vertices t that were removed
from the set T before some vertex u.

Let s = v0 −→l1 v1 −→l2 v2 . . . −→ln vn = u be a shortest path between s
and u. Then by definition

d(s, u) =
n∑

j=1

ω(ej) (6.1)

Choose i to be the largest index of a vi such that vi has been removed from
T already. Then

d(s, vi) =
i∑

j=1

ω(ej) = d(vi) (6.2)

by the induction hypothesis. (Note that if the path above is the shortest
path to u, it is a shortest path to any vi on that path.)

d(vi+1) ≤ d(vi) + ω(ei+1) = d(s, vi) + ω(ei+1) = d(s, vi+1) ≤ d(s, u) (∗)

If d(s, u) < d(u), then d(vi+1) < d(u) and we must remove vi+1 from T
before u but this contradicts the assumption that i was minimal and thus,

d(s, u) ≥ d(u)
For the case that u = vi+1, the result is already written in the inequality
(∗) above.

Thus d(t) ≤ d(s, t) and d(t) ≥ d(s, t) so d(t) = d(s, t) for all t and Dijhstra
is correct. It is easy to see that it runs in O(|v|2).

This run-time is not great and so we would like to improve it by introducing
some data-structures to make that process faster.

A heap or priority-queue is a list of elements together with a priority of
that element and a function to delete the element of minimal priority. This

72 CHAPTER 6. CIRCUITS AND CYCLES

Fleury’s Algorithm can be done in O(log n) time with n being the number of elements in the
heap.

We use d(t) as the priority function and T as the heap. We thus get a
slightly modified version that runs in O(E logV).

Dijhstra(G,s)
T ← s
d(s)← 0
for v ∈ V (G) − s do

d(v)←∞
end for
while T �= ∅ do

u← minT
delete min from T
for v ∈ Au do

if d(v) =∞ then
d(v)← d(u) + ωuv

insert v with priority d(v) into T
else

if d(u) + ωuv < d(v) then
change priority of v to d(v)← d(u) + ωuv

end if
end if

end for
end while

Algorithm 8: Dijhstra Algorithm, improved version

6.3 Eulerian Circuits

We know that we must have one component of even degree vertices to have
an Eulerian circuit. The circuit will be given by Fleury’s algorithm :

6.4. CHINESE POSTMAN 73

Fleury(G)
check that G is connected and has even degree vertices
start at any vertex, s
u← s
C ← {}
while C �= E(G) do

find an edge adjacent to u such that it is not a bridge of the
untravelled part of the graph, unless there is no alternative. Let
this edge be (u, u′)
add(u, u′) to C in order
when there is no more edge, we stop
u← u′

end while

Algorithm 9: Fleury’s Algorithm

We need to modify this to work for directed graphs:

Fleury(G)
check that d−(v) = d+(v) for all v ∈ V (G)&G connected
start at any vertex, s
let G′ be the graph obtained from G by reversing all edge directions
use BFS/DFS to construct a tree T ′ in G′

let T be the reversal of T ′; thus T contains a u − v path for each
u ∈ V (G)
order all edges leaving every vertex u such that the edge in T is last
construct the circuit: whenever u is the current vertex exit along the
next unused edge in this ordering.

Algorithm 10: Fleury’s Algorithm, modified for directed graphs

6.4 Chinese Postman

If the graph is Eulerian then any Euler circuit is the answer as they all have
the same length (they cover every edge once).

If the graph is not Eulerian, it can be made Eulerian by adding edges to it.
So we do it like this:

74 CHAPTER 6. CIRCUITS AND CYCLES

Edwards and Johnson (G)
Suppose there are 2k vertices of odd degree
find the shortest path between all pairs of these vertices
use these lengths to weight K2k

The problem is then to find the minimum total weight of k edges
that pair up the 2k vertices. This is known as weighted maximal
matching
Add then these edges to the graph
It’s now Eulerian and any Euler circuit is a solution to the Chinese
Postman Problem

Algorithm 11: Edwards and Johnson

The matching problem will be discussed in the next chapter. It can be done
in O(|2k|3) and the whole algorithm here runs in O(V 3).

So even the duplicated version of Chinese Postman is solvable in polynomial-
time.

It is clear that all algorithm work.

6.5 Hamiltonian Cycles

If we delete a vertex from a Hamiltonian graph, we leave at least a Hamilto-
nian path (covering every vertex exactly once, but not necessarily a closed
path). Thus every Hamiltonian graph is 2-connected.

This is trivial to extend to further deletions: if S ⊆ V (G), then G \ S has
at most |S| components.

This is necessary but not sufficient condition. The Petersen graph satisfies
the condition but it is not Hamiltonian.

6.5. HAMILTONIAN CYCLES 75

Ore’s Theorem
Hamiltonian closure
Bondy-Chratal’s
Theorem

Chratal’s Theorem
Chratal - Erdos
Theorem

If G has |V (G)| ≥ 3 and δ(G) ≥ |V (G)|
2 then G is simple.

This bound is best-possible. To show that there exists a graph with just
one less edge that it is not Hamiltonian consider the graph made of cliques
of order �n+1

2 � and �n+1
2 � showing a vertex of degree �n−1

2 �. This graph is
not 2-connected and has δ(G) = �n−1

2 �.

We rephrase this to:

Theorem 42. (Ore)
Let G be a simple graph and u, v be non-adjacent vertices with d(u)+d(v) ≥
|V (G)|, then G is Hamiltonian if and only if G+ uv is Hamiltonian.

We make a definition and can then rephrase again.

Definition 30. The Hamiltonian closure of a graph is obtained from the
graph by adding edges between pairs of non-adjacent vertices whose degree
sum is at last |V (G)|, until no such pair remains.

Theorem 43. (Bondy-Chrátal)
A simple graph is Hamiltonian if and only if its closure is Hamiltonian.

It follows that:

Theorem 44. (Chrátal)
Suppose the vertex degrees satisfy d1 ≤ d2 ≤ · · · ≤ dn and i < n

2 ⇒ (di >
i & dn−i ≥ n− i), then the graph is Hamiltonian.

Finally,

Theorem 45. (Chrátal - Erdös)
If the connectivity is at least equal to the independence number, then G is
Hamiltonian (unless G ∼= K2).

76 CHAPTER 6. CIRCUITS AND CYCLES

6.6 Is G Hamiltonian ?

This question is NP-complete. Thus we must effectively search all possibil-
ities.

HamCycle(G,P,e)
// initially call with (S, { }, s) with s any vertex
while e has unvisited neighbors do

X ← some unvisited neighbor
pruning:
if the graph with P contracted to X admits an Ham. Cycle then

P ← P +X

end if
if P includes all vertices then

if we can form a cycle then
return success and output P

else
P ← P −X

end if
end if
HamCycle(G,P,X)

end while
return failure

Algorithm 12: Hamiltonian Cycle

Pruning can get very heavy (?) but this is the only way to find Hamiltonian
cycles in a same way.

6.7 Planar and Hamiltonian Graphs

Suppose G is hamiltonian and planar, then we construct a proper 4-coloring
by coloring the regions inside the cycle A and B alternately and regions
outside the cycle C and D alternately.

It is clear that this procedure colors the faces of the graph properly. We
expand on this idea to give a planarity detection routine for Hamiltonian
graphs.

6.8. LINE GRAPHS AND HAMILTONIAN GRAPHS 77

HamPlanarity(G)
Draw the Hamiltonian cycle in the plane, this is H
List all edges E = E(G)− E(H)
Form the graph K in which each e ∈ E is a vertex and {ei, ej} an
edge if and only if ei and ej cross in the drawing given
G is planar if and only if K is bipartite.

Algorithm 13: Planarity detection for Hamiltonian graphs

Example 25.

with K - bipartite and so G is planar which we knew.

6.8 Line Graphs and Hamiltonian Graphs

An Eulerian circuit in G gives a Hamiltonian cycle in L(G). This is obvious
by construction of L(G).

However, a Hamiltonian cycle in L(G) does not imply an Eulerian circuit
in G:

78 CHAPTER 6. CIRCUITS AND CYCLES

Here G is not Eulerian, although L(G) is Hamiltonian.

Nevertheless it is a useful condition. Note that L(G) above has L(G) ∼= K3

and L(K3) ∼= K3. Thus L(L(G)) �∼= G in general. Therefore we have to find
some clever scheme for finding G given L(G) or even determining whether
a given graph is a line graph.

Consider:

the 2-valent ver-
tices correspond
to the marked
edges in G

now construct the graph H from L(G) by adding a vertex and two edges
from this vertex to α and β.

This implies that we must add
an edge to G that is adjacent
to the edges α and β and not
the other edges. As this is
clearly impossible, H is not
a line graph. Thus there ex-
ist graphs that are not line
graphs.

Theorem 46. A simple graph G is the line graph of simple simple graph
iff E(G) has a positive partition into cliques using each vertex of G at most
twice.

6.9. THE TRAVELLING SALESMAN 79

Beineke’s Theorem
P
NP
NP-hard
NP-complete

This is interesting but not efficient to test.

Theorem 47. (Beineke)
A simple graph G is the line graph of some simple graph iff G does not
contain any of the nine graphs below as an induced subgraph.

6.9 The Travelling Salesman

TSP = Find the Hamiltonian cycle of shortest total edge weight or if G is
not Hamiltonian, find a cycle covering each vertex of minimum total edge
weight.

Definition 31. An algorithmic problem is

• P if there exists a polynomial-time algorithm for it.

• NP if a solution can be verified in polynomial-time.

• NP - hard if a polynomial-time algorithm can be used to give a
polynomial-time algorithm for every problem in NP.

• NP - complete (NPC) when it is NP-hard and in NP.

80 CHAPTER 6. CIRCUITS AND CYCLES

After we have one problem in NPC we may demonstrate that another prob-
lem is also in NPC by constructing a polynomial-time algorithm that trans-
lates any instance of the known problem to the desired problem and proving
that the desired problem is NP.

There are many problems in NPC. One of them in TSP. By definition, if we
found a polynomial-time algorithm for any one of these (by translation) we
have a polynomial-time algorithm for all NP problems, i.e. we would have
NP=P.

While no such algorithm exists, it has also not been proven that NP �= P.

If you prove NP �= P, then you would have to generate significant insight into
the structure of algorithmic problems which would be invaluable for research.
If you demonstrate (by an algorithm) that NP=P, then you would have done
something of extreme practical importance. Currently most people think NP
�= P merely by the weight of past attempts to demonstrate good algorithms.

Thus, for the moment, we are stuck with using heuristics. These give the
right answer only sometimes. We hope that we can at least prove that the
solution cannot differ from the optimum by some amount. We have:

Theorem 48. For TSP, we have a polynomial-time algorithm that produces
a solution at most twice the length of the optimal one when the triangle
inequality holds:

ω(i, j) + ω(j, k) ≥ ω(i, k)

for all i,j,k. This must hold if the weights are really distances in the plane,
so this solves the classical TSP.

Proof.
Find a tree that meets all vertices and is of minimum weight. This is called
the minimum-spanning tree. Let its weight be M .

Suppose we have the optimal TSP solution. If we delete one edge, we have
a spanning tree of weight at least M .

Replace each edge of the tree by two oppositely oriented edges. Since
d−(v) = d+(v) for all v, this graph is Eulerian. It has 2n edges and weight
2n.

Now reduce the number of edges (without increasing the total weight) while
maintaining the property that the cycle visits all vertices, we obtain a cycle
of cost at most 2n.

This reduction can only be made due to the fact that the triangle inequality
holds. Otherwise creating the cycle may necessitate the increase in total
length.

6.10. INSERTION METHODS 81

6.10 Insertion Methods

As TSP is NPC we need heuristics to get an answer in practice. One example
is the furthest-point insertion method that gets to within 5% to 10 % of the
optimal tour length on average.

We note that the TSP can be asked in a variety of ways. The classic case of
cities gives rise to an undirected complete graph. In this case the problem is
symmetric and a proper solution (i.e. no repetition of vertices) is possible. If
the problem is asymmetric, the problem is much harder. It is also harder if
the graph is not complete because then it is not certain that a Hamiltonian
cycle exists. The condition that the TSP tour is a Hamiltonian cycle is the
triangle inequality:

In any undirected Hamiltonian graph that satisfies the triangle inequality
(ωij ≤ ωik + ωkj) no closet tour that visits every node can have weight
smaller than the smallest-weight Hamiltonian cycle.

In general the graph does not obey the triangle inequality and it is not
symmetric or Hamiltonian.

First compute the all-pairs shortest paths and start at any vertex. We have
a partial tour and now select a new vertex to add to the row. Suppose the
partial tour is

T = {v1, v2, . . . , vk}

Then we select the next vertex by this formula

vk+1 = max
v∈A(vk)

|T |−1

min
i=1

(d(v, vi) + d(v, vi+1)) (6.3)

That is, from the vertices that we can reach from vk, we select the vertices
that add the smallest distance to the tour and from these select the worst
one. This gets us a rough tour first and then allows us to fill in the details
near the end. One might use other criteria but this seems to work best in
practice.

We have two steps: (1) select a new vertex; (2) insert it somewhere in the
already built tour. We maintain an array d(v) that measures the shortest
distance from v to the already built tour. The node with furthest distance
is to be inserted next. Now we need to agree on where to insert it. For every
possibility compute the cost (cij = ωif + ωfj − ωij) over all edges (i, j) in
the tour and the new vertex f . Then select the edge (t, h) with smallest cost
and add f between them. Thus:

82 CHAPTER 6. CIRCUITS AND CYCLES

k-optimal
FITSP:
vT ← {s} // we have an initial cycle of one node
ET ← {(s, s)} //and zero weight. This is fictitious of course
ωss ← 0
tω ← 0 // the total weight
for every node u ∈ V \ VT do

d(u)← ωsn

end for
while |VT | < |T | do
← vertex in V \ VT with largest d(u)
for every edge (i, j) ∈ ET do

cij ← ωif + ωfj − ωij
end for
(t, h)← edge in ET with smallest cth
ET ← ET ∪ {(t, f), (f, h)} \ {(t, h)}
VT ← VT ∪ {f}
tω ← tω + cth
for all x ∈ (V \ VT) do

d(x)← min(d(u), ωfx)
end for

end while

Algorithm 14: FITSP

Observe that this is O(n2) and that it depends on the choice of initial vertex.
If we are allowed O(n3) then run this for all starting vertices and select the
minimum.

6.11 k-optimal Methods

Suppose that we have a tour and we would like to improve it. Suppose we
delete k ≥ 2 edges from the tour and add edges to make it a tour again
with lower weight. We call a tour k-optimal when the re exists no set
of k edges that can be improved like this. From experiments we conclude
that 3-optimal are within a few percent of the optimal tour. For k > 3,
the computation time needed increases sharply the relative increase in the
solution quality. Note that the chosen edges do not have to be adjacent.

So, for each edge-triple, select three replacement edges that lower the total
weight. Continue until no such replacements are possible.

Example 26.

6.11. K-OPTIMAL METHODS 83

Figure 6.1: solid lines - paths kept; dashed lines - edges deleted; pointed
lines - new edges

84 CHAPTER 6. CIRCUITS AND CYCLES

acyclic
forrest
tree
leaf
pendant
spanning subgraph
spanning treeChapter 7

Trees

7.1 Basics

Definition 32. A graph without cycles is called acyclic . A forrest is an
acyclic graph and a tree is a connected forrest. A leaf or pendant is a
vertex of degree 1. A spanning subgraph of a graph G is a subgraph with
vertex set V (G). A spanning tree is a spanning subgraph that is also a
tree.

Note that a spanning subgraph need not be connected.

First we note that a tree, upon deletion of a leaf, is still a tree. Thus trees
can be grown by adding leaves. This is useful for roving results by induction.

Theorem 49. Every tree with at least two vertices has at least two leaves.
Deleting a leaf from a tree with n vertices leaves a tree with n− 1 vertices.

Theorem 50. For a graph on n vertices (n ≥ 1) te following are equivalent:

1. G is a tree

2. G is connected and acyclic

3. G is connected and has n− 1 edges

4. G has n− 1 edges and no cycles

5. For any u, v ∈ V (G), G has exactly one u,v-path.

The characteristics allow checking of the question: Is G a tree ? Clearly
a single DFS or BFS is sufficient to test condition 3 and this is simples to
check.

Theorem 51. Every connected graph has a spanning tree (delete an edge
for every cycle).

85

86 CHAPTER 7. TREES

Pigeonhole Principle
eccentricity
diameter
radius
center

Theorem 52. (Pigeonhole Principle) Every n-vertex graph with n−k edges
has at least k components.

Theorem 53. If T is a tree with k edges and G is a simple graph with
δ(G) ≥ k, then T is a subgraph of G. (use induction on k)

Theorem 54. In a tree, every edge is a bridge and adding any edge creates
exactly one cycle.

Theorem 55. If T and T ′ are spanning trees of a connected graph G and
e ∈ E(T)\E(T ′), then there is an edge e′ ∈ E(T ′)\E(T) such that T −e+e′
and T + e− e′ are spanning trees of G.

Proof. Every edge of T is a bridge. Let U and U ′ be the vertex sets of
the two components of T − e. Since T ′ is connected it has an edge e′ with
exactly one endpoint in U and U ′. Thus T − e+ e′ is a spanning tree. Same
thing in reverse for the other case. �

Definition 33. The eccentricity ε(u) is the maximum distance of the ver-
tex u from other vertices. The diameter diam(G) and radius rad(G) are
the maximum and the minimum eccentricities in G respectively. The center
of G is the subgraph induced by the vertices of minimum eccentricity.

Recall that the graph G′ induced by A ⊆ V (G) from G is the graph V (G′) =
A and E(G′) consisting of all edges with both endpoints in A.

Every path in a tree is the only path between those two vertices and thus
the diameter of a tree is the length of the largest path.

Theorem 56. The center of a tree is one vertex or one edge.

Theorem 57. If u is a vertex on a tree T of n vertices, then

∑
v∈V (T)

d(u, v) ≤
(
n

2

)
=

n!
(n− 2)!2!

=
n(n− 1)

2

[for Pn this sum is clearly
n−1∑
i=0

i =
(
n
2

)
and we extend this by induction on n

for all trees.]

Theorem 58. If H is a subgraph of G, dG(u, v) ≤ dh(u, v).

Theorem 59. If u is a vertex of a connected graph G

∑
v∈V (G)

d(u, v) ≤
(
|V (G)|

2

)

[we know it for trees and the above theorem is obvious].

7.2. COUNTING TREES 87

Wiener index
Cayley’s Formula
Prufer’s Sequence

Definition 34. The Wiener index is

W (G) =
∑

u,v∈V (G); u �=v

d(u, v)

for any graph G.

If we draw a graph of a molecule by vertices for atoms and edges for bounds,
we may study the chemical structure of elements using graph theory. This
index was originally used to study the boiling point of paraffin.

7.2 Counting Trees

Theorem 60. There are nn−2 trees with vertex set [n] = {1, 2, ..., n}.

The idea is to establish a bijection between the trees and the sequences
of length n − 2 of [n] of which there are nn−2. The formula is known as
Cayley’s formula and the sequence as Prüfers’s sequence .

To compute the Prüfer sequence for a tree, iteratively delete the last leaf
from the tree (in terms of the vertex labels) and add the label of its neighbor
to the sequence.

Example 27.

We delete in this order:
1,5,2,4,3
and so the sequence is
42436.
We have obtained a se-
quence of length n− 2.

Suppose we have a sequence a of length n. We begin with n + 2 isolated
vertices. At the ith step: let x be the label of a in position i and let y be
the smallest label that does not appear after i in a and has not been marked
”finished”. Add the edge yx and mark y ”finished”. After exhausting a, join
the two remaining unfinished vertices by an edge. The result is a tree. We
will not prove that this is the inverse of the above, but it seems plausible.

88 CHAPTER 7. TREES

incidence matrix
rank
totally unimodular

Example 28.

a=42436 and we need 7
vertices:
we add the edges xy in
this order:
41, 25, 42, 34, 63, 67
α, β, γ, δ, ε, ξ
which is obviously iso-
morphic to the above
example.

Theorem 61. The number of trees with vertex set [n] and the vertices
1, 2, ..., n with degrees d1, d2, . . . , dn respectively is

(n− 2)!
n∏

i=1
(di − 1)!

7.3 Counting Spanning Trees

Suppose G is directed and ek is an edge, then

ωi(ek) =

1 : if vi is the head of ek
−1 : if vi is the head of ek

0 : not in ek

The matrix M = ωi(ek) is called the incidence matrix of the graph G.

The number of linearly independent rows is called the rank of a matrix.

Theorem 62. If G has n vertices and p connected components, then the
rank of its incidence matrix is n− p.

Moreover G is a tree if and only if all columns are linearly independent.

A matrix is called totally unimodular if the determinant of any square
submatrix is either ±1 or 0.

Theorem 63. The incidence matrix of any graph is totally unimodular.

Theorem 64. Let B be the matrix obtained from the incidence matrix of
G by deleting any row. Then G is a tree if |det(B)| = 1 and not a tree if
det(B) = 0.

Theorem 65. The number of spanning trees of G is det(BBT).

7.4. DECOMPOSITION 89

decomposition
Ringel’s Conjecture
Haggkvist’s Conjecture
Graceful Tree
Conjecture

So far this was for the directed case. For undirected graphs we have:

Theorem 66. If G is a loopless, undirected graph whose adjacency matrix
is A then we define

Q = −A+ diag(d1, d2, . . . , dn)

where di is the degree of vertex i and the matrix Q∗ is obtained from Q by
deleting any row a and column a from Q. Then the number of spanning
trees is

det(Q∗).

7.4 Decomposition

Definition 35. A decomposition of a graph G is a partition of E(G) into
pairwise edge-disjoint subgraphs.

So any graph can be partitioned into parts consisting of only one edge. We
ask if we can decompose G into a number of isomorphic copies of a tree T .

Conjecture 2. (Ringel’s Conjecture) If T is a fixed tree of m edges, then
K2m+1 can be decomposed into 2m+ 1 copies of T .

Conjecture 3. (Häggkvist’s Conjecture) If T is a fixed tree of m edges,
then any 2m-regular graph can be decomposed into V (G) copies of T .

Both are unknown. Proofs have focused on a more powerful result:

Conjecture 4. (Graceful tree Conjecture)
It T is a tree of m edges, then the vertices if T can be labelled with dis-
tinct numbers 0, 1, 2, ...,m such that edge-differences are {1, 2, ...,m}. Such
a labelling is called graceful

Example 29.

90 CHAPTER 7. TREES

minimum spanning tree
greedy algorithm
Kruskal Algorithm

Example 30.

K5 can be decomposed into 5 copies of T as numbered below.

7.5 Minimum Spanning Tree

Definition 36. The minimum spanning tree T of a graph G is a span-
ning tree of minimum total edge-weight of G.

The graph must be connected and we assume that it is weighted as otherwise
any spanning tree would have the same weight (as they al have the same
number of edges).

Definition 37. A greedy algorithm is an algorithm that, at each step,
chooses the best next step regardless of history of future steps, i.e. it is a
local choice.

Most of the time greedy algorithms are fast but deliver suboptimal solutions.
Here a greedy idea gives the optimal solution:

Kruskal Algorithm:

1. Sort all edges in order of increasing weight.

2. Add the shortest edge left to the tree if and only if it creates no cycle,
i.e. if its inclusion joins two as-yet unconnected components of the
tree. We resolve conflicts arbitrarily.

After sorting the edges, we maintain the component in which each vertex
is in memory. We accept the next edge if the component number of the
endpoints differ. Then we update the vertex labels. The search is O(n) and
the update O(log2n) for n vertices and pre-sorted edges. If we also have
to sort the edges we have to multiply this by the complexity of the sorting
in the number of edges.

7.5. MINIMUM SPANNING TREE 91

Theorem 67. Kruskal’s algorithm is correct.

Proof.

Clearly it produces a spanning tree, T . Assume that the minimal spanning
tree is T ′. Suppose T �= T ′ and let e be the first edge in T that is not in T ′.

Adding e to T ′ creates a cycle so there is an edge e′ in T ′ that is not in T .
But T ′ + e− e′ is a spanning tree. Since T ′ contains e′ and all edges chosen
before e, both edges e and e′ are available when the construction algorithm
has to choose, and hence chooses e. Thus ω(e) ≤ ω(e′). Thus T ′ + e − e′
has weight at most that of T ′ and contains a longer piece of T . Iterating
this shows that we can make T ′ to contain all of T and that thus T is of
minimum weight.

The graph on the left has its edges sorted and we insert the edges into the
tree on the right in the order of the Greek letters. This is the minimum
spanning tree of that graph.

As the number of edges can scale as n2, sorting the edges by weight makes
this algorithm potentially expensive. We have another greedy idea to im-
prove it.

Prim:

We grow the spanning tree from a
single vertex and add an edge be-
tween the tree already built and the
remaining vertices by choosing the
cheapest such edge. Ties are broken
arbitrarily.

Boruvka:

Start from a forrest of isolated
vertices. Pick the cheapest
edge having each component
of the current forrest.

92 CHAPTER 7. TREES

Huffman’s Algorithm These algorithms are all competitive if the edge-weights are pre-sorted. Like
this we can implement Kruskal in O(nlog2n) and Prim runs in O(n2). Thus
Prim is good for dense graphs and Kruskal for sparse ones.

We want the minimum spanning tree for example to be able to find the
minimum amount of wire to connect n towns together.

7.6 Huffman encoding

Given some text, we want to store it efficiently. We represent each character
by a bit sequence such that frequent characters are assigned short sequences.
As these sequences differ in length,we must be able to decide when one is
finished, i.e. no sequence may be a prefix of another sequence.

The prefix-tree condition is satisfied if we assign the codes from a tree in
which each vertex has two children and left means 0 while right means 1.
Shorter sequences terminate at a shorter path from the root vertex.

The length of a message then is
∑
pili where li is the length of the code

assigned to pi. Normally we need to use the same length codes for each and
this gives the ratio.

How do we deal with frequencies then? We need to kill some branches
corresponding to likely items:

Huffman’s Algorithm:

7.6. HUFFMAN ENCODING 93

• input: n probabilities p1, p2, ..., pn

• base case: n = 2. The tree 0− 1 will do, i.e. we assign the symbol 0
to p1 and 1 to p2

• recursion: select the two least likely items p and p′ and replace them
by a single item of probability p+ p′. Solve this new problem.

After the solution, give two children to the vertex corresponding to
the combined vertex and give them weights p and p′.

In other words, replace the code word from the combined item with
by the two words corresponding to p and p′ by appending a 0 and a 1
respectively.

Example 31. n = 5 and p = (0.1, 0.2, 0.3, 0.15, 0.25) =: (A,B,C,D,E).
and we combine in this order:

F = A+D (0.25)
G = B + E (0.45)
H = C + F (0.55)
I = G+H (1.0)

and this looks like:

and so we put B = 00, E = 01, C = 10, A = 110, D = 111. The code

reduction is
5∑

i=1
pili = 2.25 as opposed to 3.

94 CHAPTER 7. TREES

matching
marriage!unstable
marriage!stable

Chapter 8

Matching

8.1 Stable Marriage

Let there be n men and women. For each man/woman, we have a list of
members of the other sex in the order of preference for marriage. A match-
ing is an assignment of monogamous marriages, i.e. a bijection between
men and women.

A marriage is unstable if two people of different sex prefer each other to
their spouses. It is stable if it is not unstable.

Example 32. Let men be A,B,C,D and the women be a, b, c, d. Then
consider the following tables.

Man: Women:
A cbda a ABDC
B bacd b CADB
C bdac c CBDA
D cadb d BACD

This gives rise to many matchings, for example (Aa,Bb,Cc,Dd) which is
unstable because A and b prefer each other to their spouse.

One may think that arranging some divorces and some marriages will lead
to a stable marriage. While this is true it depends heavily on the method
chosen.

We generalize in two ways: get rid of monogamy and make some people
infinitely undesirable. We could also force some given marriages.

Polygamous stable marriage occurs when m universities want to admit n
students. More than one student goes to a university but never to more
than one. Let the kth university admit uk students. By creating either

95

96 CHAPTER 8. MATCHING

fictitious students or fictitious universities both very undesirable, we create
a situation in which every student is taken and all places are filled, i.e.

u1 + u2 + · · ·+ u+m = n

This problem is translated into stable marriage by replacing each university
by uk places that each have the same wish list, that of the university.

If the list of preferences do not include all n members of the other sex, the
missing people are effectively infinitely undesirable. So we introduce the
obvious condition that the pairing must be with a person on the list.

What we do here is to introduce a widower V and a widow W to the set of
men and women respectively. V will be ω′s last choice, ω will be V ′s last
choice. Women will have their existing listing, append V to the end and list
any missing men in arbitrary order. Men will do likewise with ω.

For these versions we find:

Theorem 68. The stable marriage problem is solvable, i.e. there always
exists at least one stable marriage.

Theorem 69. The incomplete marriage problem is solvable if and only if
the augmented system has a stable marriage with V married to ω.

Theorem 70. If there exists a stable marriage of the augmented incomplete
marriage problem with V married to ω, then V is married to ω for all stable
marriages.

Having the existence theorem (hunting licence) we must find it (do the
hunting).For this, let n be the number of women and men, k is the number
of couples already formed, X is a suitor, ω is the woman to whomX advances
and Ω is the least desirable man - we introduce this as a further man, not
already listed and append it to the end of women’s lists, i.e. Ω is the
termination character of a woman’s preference list.

8.1. STABLE MARRIAGE 97

Stable Marriage:
k ← 0 [init: all women are temporarily engaged to Ω]
while k < n do

X ← (k + 1)− th man
while X �= Ω do

ω ← best remaining choice in the list of X
if ω prefers X to her fiancé then

engage ω and X
X ← preceding fiancé of ω

end if
if X �= Ω then

withdraw ω from X’s list
end if

end while
k ← k + 1

end while
celebrate !!!

Algorithm 15: Stable Marriage

We note that the following points are valid at any time during the algorithm.

• If a is removed from A’s list, no stable marriage can contain Aa.

• If A prefers a to his fiancé, it means that a has rejected him for another.

• Two women are never the fiancés of one man (except Ω).

• A woman’s situation never gets worse.

• No man’s preference list is emptied.

• The obtained matching is stable [holds at the end].

In fact: note that the roles of men and women can be switched.

Theorem 71. This algorithm produces the optimal solution for all men,
i.e. there exists no stable marriage in which any man could have a spouse
he prefers to his current one.

Theorem 72. In any stable marriage every woman has a partner superior
or equal to her current one, i.e. the algorithm produces the worst answer for
women.

Take-home lesson:
The more you take initiative in anything, the better off you will be.

98 CHAPTER 8. MATCHING

regret
matching
saturated
matching!perfect
1-factor

[This algorithm applies very generally to life and should be carefully studied
for strategy in general.]

The largest number of proposals in this algorithm is n2−n+1. If we define:

Hn = 1 +
1
2

+
1
3

+ · · ·+ frac1n = ln(n) + γ +
1
2n
− 1

12n2
+ ε (8.1)

where 0 < ε < 1
120n4 and γ= Euler’s number = 0.57721566...

then it can be shown that the mean number of proposals for random pref-
erences is nHn +O(n log4n) and the average complexity is thus O(n ln n).
This is a rare case of an algorithm for which the complexity of the average
case is known.

So far the solution is best for one group and worst for the other group. Can
we do ti fairly? Define the regret of a person as the distance to the spouse
of that person’s list. Let U be the maximum regret of 2n people. We now
try to minimize U .

Finding an optimal solution for all men and then also for all women, we
get upper an lower bounds on the regret for every individual. We form
marriages between those people with equal upper and lower bounds and so
reduce the system.

Then we chose a woman [could be a man] at random from those of greatest
upper bound. Let this woman be a. Let A be the worst remaining choice of
a. We also note that a is the best choice of A among the remaining women.
We remove a from A’s list and obtain a new optimal solution for the men.
This increases the lower bound of A and at least one more man. It also
lowers the upper bound of a and at least one more woman. It is clear that
we will find a stable marriage in O(n2) iterations, i.e. this is an O(n3 ln n)
algorithm.

Take-home lesson:
Selfishness leads to a good solution for you. A fair solution requires cooper-
ation between all concerned parties.

8.2 Matching

We have investigated a case of a matching problem so far. Let us treat this
in more generality then:

Definition 38. A matching of size k in a graph G is a set of k pairwise
disjoint edges. The vertices covered by these edges are called saturated .
If a matching saturates every vertex of G, it is a perfect matching or a
1-factor .

8.3. BIPARTITE MATCHING 99

maximal matching
M-alternating path
M-augmenting path

Clearly the stable marriage assignment was a perfect matching. In the graph
Kn,n we have n! perfect matchings; in K2n+1 the same and in k2n there are
2n!
2nn! . Why is that so ?

We seek a large matching in the sense of total edge weight. This would
be the satisfaction of the people in the marriage case for example. We
imagine that we have some matching. We want to enlarge it by iteratively
selecting an edge disjoint from the previous ones. The result is a maximal
matching i.e. one which can not be easily enlarged but this is not, in
general, a maximum matching. Consider P4:

The edge 2− 3 is a maximal matching but the maximum matching has two
edges, 1− 2 and 3− 4.

Definition 39. For any matching M an M-alternating path is a path
that alternates between edges inM and edges not inM. AnM-augmenting
path is an M-alternating path starting and ending on unsaturated vertices.
If P is an M-augmenting path and E(P) is the edge set, we observe that
M∩ E(P) −→ E(P) \M produces a new matching M′ from M with one
more edge.

Thus maximum matching have no augmented paths !

Theorem 73. A matching is minimum if and only if the graph has no
augmented paths.

8.3 Bipartite Matching

The marriage problem was a matching problem in a bipartite graph as two
men and two women are not allowed to marry, at least in the traditional
case. We might suppose that there are more women than men (which is
actually true in the world today) and so no perfect matching exists.

Thus we ask if there exists a matching saturating the men, such a matching
is called a matching of {men} into {women}.

100 CHAPTER 8. MATCHING

min-max relation
independence number
edge cover

We note that for any group of men, there must be at least as many women
liking some of them. Thus if we want a matching of set X into Y , for any
S ⊆ X, there must be at least |S| vertices in Y having neighbors in S, i.e.
if we represent the set of vertices of Y with neighbors in S by N(S), then
|N(S)| ≥ |S|.

Theorem 74. If G is bipartite with partite sets X and Y , then G has a
matching from X into Y if and only if |N(S)| ≥ |S| for all S ⊆ X.

Theorem 75. For k > 0, every k-regular bipartite graph has a perfect
matching.

This last theorem is a generalization of the fact the one may always marry
the men to women (not necessarily stably).

Given a matching, we would like to determine if it is maximum. We could
look for an augmenting path but that would take exponentially long. The
following helps:

Theorem 76. If G is bipartite, then the maximum size of a matching equals
them minimum size of a vertex cover of G, a set of vertices that contains at
least one endpoint of every edge.

This is known as the min-max relation as it relates the answers of a
minimization to a maximization problem. So we can prove that the matching
AND the cover are both optimal merely by exhibiting that they are of the
same size.

This is nice but still not helpful. We thus define the independence num-
ber to be the maximum size of an independent set of vertices, i.e. vertices
that are pairwise not connected. This is the analogue of finding a match-
ing. We can also define a covering problem so that we can prove a min-max
relation.

An edge cover is a set of edges that cover the vertices, i.e. a vertex belongs
to exactly one edge in the cover. We denote:

max size independent set α(G)
max size matching α′(G)
max size vertex cover β(G)
max size edge cover β′(G)

We may prove a few nice theorems.

Theorem 77. If G is bipartite, α′(G) = β(G). Note that this is the previous
theorem in our new notation.

8.4. FINDING A BIPARTITE MATCHING 101

Theorem 78. In a graph G, S ⊆ V (G) is an independent set if and only
if S is a vertex cover and thus α(G) + β(G) = n(G). Recall that S is the
complement of S in V (G).

Theorem 79. If G has no isolated vertices, α′(G) + β′(G) = n(G).

Theorem 80. If G is bipartite and has no isolated vertices, then α(G) =
β′(G).

8.4 Finding a Bipartite Matching

Those conditions did not allow us to actually find a matching in a bipartite
graph. So now we solve this remaining issue.

Augmenting Path Algorithm(G)
Data : G is bipartite, X and Y are partite sets
M← some matching
U ← allM unsaturated vertices in X
S ← U
T ← ∅
while S has no unmarked vertex do

X ← an unmarked vertex in S
for every y ∈ N(X)with xy �∈ M do

if y unsaturated then
reportM-augmenting path from U to y

else
// match y to some w ∈ X

T ← T + {y}
S ← S + {w}

end if
end for
mark X

end while

Algorithm 16: Augmenting Path Algorithm

This produces a matching and vertex cover of the same size and thus optimal.
This algorithm runs in O(n3) time. It has not been written in a full detail
because it is not that good but presents the main idea. We go on to consider
the weighted case which is a generalization of this case.

102 CHAPTER 8. MATCHING

transversal
weighted cover
minimum weighted

cover
equality subgraph

8.5 Weighted Bipartite Matching

Each man/woman assigns a desire to each member of the other sex. A
desire of 0 is assigned for forbidden people. We thus seek the minimum
weight matching of Kn,n.

Definition 40. A transversal of an n by n matrix A consists of n elements,
one from each tow and column.

Compare with the rook problem in chess.

Finding a transversal of A with maximum sum is weighted matching if the
entries of A are the edge weights.

Given the weight ωij a weighted cover is a choice of labels {ui} and {vj}
such that ui+vj ≥ ωij for all i, j. The cost c(u, v) of the cover is

∑
ui+

∑
vj .

The minimum weighted cover problem asks for a cover of minimum
weight. That is, we are asked to place large enough labels on the vertices
in order to ”cover” the edges. We seek the least values such that this is
satisfied.

Theorem 81. IfM is a perfect matching in a bipartite graph G and u, v is
a cover, then c(u, v) ≥ ω(M). And c(u, v) = ωM if and only if M consists
of edges xiyj such that ui + vj = ωij. In this case M is a maximum weight
matching and u, v is a minimum cost cover.

This is the weighted analogue to the min-max relations above. We define:

Definition 41. The equality subgraph Gu,v w.r.t. a cover u, v is the
spanning subgraph of Kn,n containing the edges xiyj such that ui + vj = ωij.
If Gu,v has a perfect matching, then it has weight

∑
ui +

∑
vj and thus we

have an optimal matching and cover. If not, we change the cover.

This idea gives an algorithm.

We input a matrix A of weights on Kn,n with a bipartition X and Y .

8.5. WEIGHTED BIPARTITE MATCHING 103

symmetric difference
Hungarian Algorithm
ui ← maxj ωij

vi ← 0
M ← maximum matching in Gu,v; the equality subgraph for the
cover (u, v)
whileM is not perfect do

U ← set of M-unsaturated vertices
S ← set of vertices in X reachable by alternating paths from U
T ← set of vertices in V
ε← min{ui + vj − ωij : xi ∈ S, yj ∈ Y − T}
for all xi ∈ S do

ui ← ui − ε
end for
for all yj ∈ T do

vj ← vj + ε

end for
G′ ← the new equality subgraph
if G′ has an augmenting path then
M← maximum matching in G′

end if
end while

Algorithm 17: Hungarian Algorithm

This algorithm terminates in at most n2

2 iterations. This can be improved if
we seek the augmenting paths in a special order. Using breath-first search
simultaneously from all vertices of X that are unsaturated, we find many
paths of the same length with this single examination of the edge set. We
can show that subsequent paths must be longer than previous paths and
thus these searches can be grouped in phases of finding paths of the same
length.

Definition 42. If G and H are graphs with vertex set V , then the sym-
metric difference G�H is the graph with vertex set V whose edges appear
in exactly one of G or H. We also use this notation for sets of edges. So if
M and M′ are matchings, then

M�M′ = (M∪M′) \ (M∩M′)

We not that if M is a matching of size r and M∗ is a matching of size s,
with s > r, then at least s − r vertex disjoint M-augmenting paths exist
because at least that many paths may be found inM�M∗.

From that it follows that:

104 CHAPTER 8. MATCHING

Lemma 1. If P is a shortestM-augmenting path and P ′ isM�P -augmenting,
then |P ′| ≥ |P |+ |P ∩ P ′| where P is an edge set.

Lemma 2. If P1, P2, ... is a sequence of shortest successive augmentations,
then the augmentations of the same length are vertex disjoint paths.

So we search simultaneously from all unsaturated X vertices for shortest
augmenting paths and this yields vertex disjoint paths after which all aug-
menting paths are longer. This all augmentations can be found by one
examination of the edge set, i.e. in O(m). We can now prove that there will
be at least 2�√n�+ 2 of this so that the total weighted bipartite matching
can be done in O(m

√
n), and if the graph scales like O(n2), the algorithm

takes O(n2·5) time.

The algorithm then looks like:

Algorithm A
Step 0.
M← ∅
Step 1.
Let l(M) be the length of a shortest augmenting path relative toM.
Find a minimal set of paths {Q1, Q2, ..., Qi} with the properties that
(a) for each i, Qi is an augmenting path relative to M and |Qi| =
l(M);
(b) the Qi are vertex-disjoint
Halt if no such path exists.
Step 2.
M←M⊕Q1 ⊕Q2 ⊕ ...⊕Qi; go to step 1 ;

Algorithm 18: Maximum Matching Algorithm A

Where the crucial step is more complicated and requires a few data struc-
tures:

We assume that the graph is represented as follows: for each vertex u, a
read-only linear list LIST(u) is given containing, in arbitrary order, the
vertices v such that (u, v) is an edge. The algorithm also uses an auxiliary
last-in first-out list called STACK, which is initially empty, and a set B of
vertices which is initially the empty set. The following primitives occur in
the algorithm.

8.6. FACTORS IN GRAPHS 105

factor
k-factor

Variables
TOP top element of STACK

FIRST

Operations
PUSH x push element x onto STACK

POP pop an element from STACK
DELETE delete the first element from LIST(TOP)
PRINT POP until STACK is empty and print the successive elements

Predicates
EMPTY STACK is empty
NULL LIST(TOP) is empty

Using these variables we may write down the algorithm:

Algorithm B
PUSH s
while STACK ¬ EMPTY do

while LIST(TOP) ¬ NULL do
FIRST = first element of LIST(TOP)
if FIRST �∈ B then

PUSH FIRST
if TOP ¬ = t then

B ← B ∪ {TOP}
else

PRINT, PUSH s

end if
end if

end while
POP

end while

Algorithm 19: Maximal Set of s− t paths

This finds the maximum weight bipartite matching, i.e. the marriage as-
signment of maximum desire or satisfaction for example. What if we want
to do this for a general (non-bipartite) graph ?

8.6 Factors in Graphs

Definition 43. A factor of a graph G is a spanning subgraph of G. A
k-factor is a k-regular factor (a perfect matching is a 1-factor). An odd

106 CHAPTER 8. MATCHING

odd component
f-factor

component is a component of odd order (number of vertices). The number
of odd components of G is o(G).

Theorem 82. A graph G has a 1-factor iff o(G \ S) ≤ |S| for every
S ⊆ V (G).

We see this by analogy to previous theorems. Thus there may be a gap
between the largest matching and the smallest vertex cover.

We note that o(G \ S)− |S| has the same parity as u(G) and thus o(G \ S)
exceeds |S| by at least two for some S if u(G) is even, and G has no 1-factor.

Theorem 83. The largest number of vertices in a matching in G is

min
S⊆V (G)

{n− d(s)}

where d(s) = o(G \ S)− |S|.

Thus to prove that we have a maximum matching, we must exhibit a vertex
set S whose deletion leaves the appropriate number of odd components.
This is short, but finding S is hard.

Theorem 84. Every 3-regular graph with no bridges has a 1-factor.

Theorem 85. Every regular graph of even degree has a 2-factor.

We recall that a k-factor is a k-regular factor. Given a function f : V (G)→
N∪{0}, we ask whether a graph G has a subgraph H such that dH(v) = f(v)
for all v ∈ V (G). Such a graph is called a f-factor .

Multiple edges do not affect the existence of 1-factors, but they do affect the
existence of f-factors. We can assume that f(ω) ≤ d(ω) for all ω because if
that is not so, then G trivially has no f-factor.

Let e(ω) = d(ω)−f(ω) ≥ 0 be the ”excess” degree of vertex ω. To construct
the graphH, replace each vertex v by a bipartite graphKd(v),e(v) with partite
sets A(v) of size d(v) and B(v) of size e(v). For each edge vω in G join one
vertex of A(v) to one vertex in A(ω) so that each A-vertex participates in
one such edge.

Example 33.

8.7. MAXIMUM MATCHING IN GENERAL GRAPHS 107

In general:

Theorem 86. A graph G has an f-factor if and only if the graph H has a
1-factor.

Thus if we can test for 1-factors (perfect matchings) we can test for f-factors.
We now look at finding maximum matchings.

8.7 Maximum Matching in General Graphs

We do this by looking for augmenting paths. In bipartite graphs, it is easy
to look for them because starting with any unsaturated vertex v, we reach
vertices in the same partite set as v via edges in the matching and vertices
in the other partite set via edges not in the matching. So it is enough to
consider each vertex once. In the general graph case, the loops of odd length
will make it much harder:

108 CHAPTER 8. MATCHING

flower
stem
blossom

The marked edges are a matching and we have two augmenting paths from
a:

a, b, c, d

a, b, c, g, f, e, d, h.

We want the second one. Remember that we used to look for shortest
augmenting paths. To solve this we define:

Definition 44. LetM be a matching in a graph G and u be an unsaturated
vertex. A flower is the union of twoM-alternating paths from u that reach
a vertex X on paths of opposite parity in length (i.e. one odd, one even).
The stem is the maximal length of the common initial sequence of non-
negative even length. The blossom is the odd cycle obtained by deleting the
stem from the flower.

Hence, the flower is the whole graph except for the vertex h; the stem is
a− b− c; and the blossom is c− g − f − e− d− c.

Since the blossom has odd length, we may not leave the blossom on an edge
in the matching. The idea is to collapse the whole blossom onto the ”super-
vertex”. Since we may also reach each vertex in a blossom by a saturated
edge, when we collapse the blossom we are left with a saturated vertex.

So let’s incorporate these ideas into our original algorithm. We have a
graph G, a matching M and an unsaturated vertex u. We now explore
M-alternating paths leaving from u. e let S be the vertex set reached along
edges in M and let T be the vertex set reached along edges not in M. We
mark the members of S that have been explored and for each vertex in S∪T ,
we save the vertex from which it was reached. When we find a blossom, we
contract the whole of it.

We call a vertex even/odd if there exists an even/odd length augmenting
path form a given base vertex to this one. In a bipartite graph, no vertex is
both even and odd but in a general graph, it may be (due to blossoms).

8.7. MAXIMUM MATCHING IN GENERAL GRAPHS 109

Data : Initially we have a graph G with vertex and edge sets
V (G), E(G). P (v) is the parent of v.

E(G)← {(v, ω), (ω, v) : {v, ω} ∈ E(G)}
for all unmatched vertices v do

label(v)← ”even”
end for
for all unmatched vertices do

lavel(v)← ”unreached”
P (v)← NULL
if v is matched to edge {v, ω} then

mate(v)← ω

end if
end for

Algorithm 20: Blossom Algorithm

Now comes the main loop.

110 CHAPTER 8. MATCHING

while there exists an unexplored edge {v, ω} ∈ E, where v is even
do

if ω is odd then
do nothing

else
if ω is ”unreached” and matched then

label(ω)← odd
label(mate(ω))← even
P (ω)← v
P (mate(ω))← ω

else
if ω is ”even” and v and ω are in distinct trees T, T ′ then

output augmenting path P from root of T to v,
through {v, ω} in T ′ to root

else
if ω is ”even” and v and ω are in the same tree then

//{v, ω} forms a blossom B containing all vertices
that both (1) a descendant of the least common
ancestor of v and ω in T , and (2) and ancestor of
v or ω.
Shrink all vertices of B to a single vertex b
P (b)← P (LCA(v, ω))
for all x ∈ B do

P (x) = b

end for
end if

end if
end if

end if
end while

Algorithm 21: Blossom Algorithm continued

Theorem 87. This algorithm produces an augmenting path if there exists
one.

We then use the past method to get a longer matching from this path. The
algorithm runs in O(n4), but it can be done in O(n) stages and O(m) for
each run of finding the path, so O(n m) in general.

k-coloring
color
color class
coloring!proper
k-colorable
chromatic number
k-chromatic
color-critical
k-critical

Chapter 9

Graph Coloring

9.1 Concepts

Definition 45. A k-coloring of a graph G is a vertex labelling f : V (G)→
{1, 2, ..., k}. The labels are colors and the set of vertices with a certain color
are a color class . A coloring is proper if x↔ y implies f(x) �= f(y).

A graph is k-colorable is a k-coloring exists. The chromatic number
χ(G) is the minimum k, such that G is k-colorable. If χ(G) = k, then G is
k-chromatic . If χ(G) = k and χ(H) < k for every proper subgraph H of
G, G is color-critical or k-critical .

We observe a few things:

Loops and multi-edges make no difference to coloring and so we may ignore
them henceforth.

If the coloring is proper, each color class is an independent set. Thus:

Theorem 88. G is k-colorable iff G is k-partite.

Theorem 89. χ(G) ≥ n
α(G) where α(G) is the independence number.

Theorem 90. χ(G) ≥ ω(G) where ω(G) is the number of vertices of the
largest complete subgraph of G.

Theorem 91. χ(G) ≤ n.

All three previous theorems are best-possible bounds as they hold with
equality if G = Kn.

The average values of ω(G), α(G) and χ(G) over all labelled n-vertex graphs
are very close to 2 log n, 2 log n and n

2 log n respectively. Thus ω(G)is
generally a bad lower bound whereas n

α(G) is generally a good lower bound.

Can we get χ(G) by divide and conquer ?

111

112 CHAPTER 9. GRAPH COLORING

Cartesian Product Definition 46. The Cartesian Product G�H of two graphs G and H is
the graph with vertex set V (G)×V (H) and, (u, v) adjacent to (u′, v′) if and
only if (1) u = u′ and vv′ ∈ E(H) or (2) v = v′ and uu′ ∈ E(G).

Theorem 92. χ(G�H) = max{χ(G), χ(H)}.

Theorem 93. G is m-colorable iff G�Km has an independent set of size
n(G).

Thus chromatic number is equal to independence number as a problem and
therefore an algorithm for one will give one for the other. We also note:

Theorem 94. χ(G+H) = max{χ(G), χ(H)}. (disjoin union)

Theorem 95. χ(G ∨H) = χ(G) + χ(H). (join)

9.2 Greedy Coloring

We color a graph greedily with respect to a vertex ordering v1, v2, . . . , vn by
coloring vi with the smallest index color not used in its lower-index (in the
ordering) neighbors.

If ∆(G) is the maximum degree of a vertex, we see that any vertex has at
most ∆(G) previous neighbors and that thus:

Theorem 96. χ(G) ≤ ∆(G) + 1.

Furthermore, greedy coloring will achieve this inequality. In fact,

Theorem 97. χ(G) ≤ ∆(G) if G �= Kn and G �= Cm with m odd.

Surprisingly,

Theorem 98. Every subgraph has a vertex ordering such that greedy color-
ing uses χ(G) colors. This ordering is usually hard to find.

9.3. APPLICATIONS 113

However, using a random ordering, usually gives a coloring using 2 χ(G)
colors.

Vertices of high degree should be considered first, so

Theorem 99. If a graph G has a vertex degree sequence d1 ≤ d2 ≤ · · · ≤ dn,
then χ(G) ≤ 1 + maxi min{di, i − 1} by applying greedy coloring to the
vertices in non-decreasing order.

Given an ordering σ of V (G), we let Gi be the subgraph of G induced by
{v1, v2, . . . , vi} and f(σ) be:

f(σ) = 1 +maxi dGi(xi). (9.1)

Theorem 100. Greedy coloring applied to G using σ gives χ(G) ≤ f(σ).

We define σ∗: Let vn be a vertex of minimum degree in G and for i < n let
vi be a vertex of minimum degree in G \ {vi+1, . . . , vn}.

Theorem 101. σ∗ minimizes f(σ) and f(σ∗) = 1 + max
H⊆G

δ(H).

We can also do it if we orient the graph:

Theorem 102. If D is an orientation of G with largest path of length l(D),
then χ(G) ≤ 1 + l(D), and equality for some orientation.

9.3 Applications

Coloring a graph in which vertices represent activities and edges conflicts,
are colored in order to produce good schedule for these activities. Edges
may be labelled and/or weighted to represent conflicts of different kinds,
and conflicts of different severity. We then ask for the minimal coloring or a
coloring minimizing some function which contains the edge weights as well
as the number of colors.

This is used by compiles to schedule variables to registers for example.

It is used in sports tournaments to schedule matches as well as universities
to schedule classes and exams.

9.4 Counting Colorings

Definition 47. The function χ(G; k) counts the mappings f : V (G) → [k]
that properly color G. Not all the colors need to be used and permuting the
colors should be counted twice.

114 CHAPTER 9. GRAPH COLORING

chromatic polynomial For an independent set, we can color each vertex as we like. Thus any
assignment is proper,

χ(Kn; k) = kn. (9.2)

For Kn, we color each vertex a different color but we make this choice from
k − i+ 1 available colors at stage i. Thus,

χ(Kn; k) = k(k − 1)(k − 2)...(k − n+ 1). (9.3)

If T is any tree, we color the root in k ways. At every stage only one color
is forbidden so we color every other vertex by one of these. Hence,

χ(T ; k) = k(k − 1)n−1. (9.4)

for n-vertices in T .

The value of χ(G; k) is a polynomial and is known as the chromatic poly-
nomial .

Theorem 103. If G is simple and e ∈ E(G), then

χ(G; k) = χ(G− e; k)− χ(G · e; k)

where G · e means, contract the edge e in G.

Proof. Every k-coloring of G is a k-coloring of G − e. Every proper
k-coloring of G − e is a proper k-coloring of G iff the endpoints of e get
distinct colors. Thus χ(G; k) = χ(G− e; k) - the number of proper colorings
of G that give the same endpoints of e, the same color, i.e. G · e.
Thus the formula follows. �
This is an example of a topological invariant. This may be used recursively
to compute χ(G; k) as both G − e and G · e have fewer edges than G. We
already have the right initial condition or base case for the recursion, i.e.

χ(Kn; k) = kn. (9.5)

Example 34.

We want to find χ(G; k). For this
we draw the tree of operations and
write the size of each independent
set on the leaf nodes. Each left turn
is a contraction and each right turn
a substraction of an edge. If we go
down and contract an odd number
of times the factor kα is subtracted,
otherwise added.

9.4. COUNTING COLORINGS 115

⇒ χ(G; k) = k4 − 5k3 + 8k2 − 4k

Theorem 104. χ(G; k) is a polynomial in k of degree n(G), with integer
coefficients alternating in sign and beginning 1,−e(G),

For graphs with many edges, we want to rewrite the formula like this:

χ(G− e; k) = χ(G; k) + χ(G · e; k) (9.6)

Example 35. Take the same as the previous example.

χ(G; k) = χ(K4; k) + χ(K3; k)
= k(k − 1)(k − 2)(k − 3) + k(k − 1)(k − 2)
= k(k − 1)(k − 2)2

= k4 − 5k3 + 8k2 − 4k

Much faster !

Theorem 105. If c(G) is the number of components of G and G(S) denotes
the spanning subgraph of G with edge set S, then

χ(G; k) =
∑

S⊆E(G)

(−1)|S|kc(G(S)).

While this contains too many terms to be useful in calculations, it is useful
for providing theorems.

Theorem 106. If a(G) is the number of acyclic orientations of G, then

χ(G;−1) = (−1)n(G)a(G).

116 CHAPTER 9. GRAPH COLORING

9.5 Obtaining a Coloring

Testing for bipartite is easy and the graph then has χ = 2. For more, we
use greedy coloring on a non-increasing degree order of the vertices.

To improve a greedy coloring observe that exchanging two colors is also
a proper coloring. So, having greedy colored G, delete all vertices except
those of color i and j. If the remaining graph (i.e. the induced subgraph
of G induced by the color classes i and j) has two or more components, we
may repaint one or more components, while leaving a proper coloring. After
such recoloring, a vertex v previously adjacent to both i and j could now
be adjacent only to i and not to j leaving it to us to color j.

Simulated Annealing with this exchange process is likely to be the best
solution:

Simulated Annealing:
Create initial solution S
Initialize temperature t
while no change in C(S) do

for i = 1 to iteration-length do
Generate transition from S to Si

if C(S) ≥ C(Si) then
S ← Si

else
if exp[(C(S)− C(Si))/kt > random[0, 1]] then

S ← Si

end if
end if

end for
Reduce temperature t

end while
Return S

network
capacity
source
sink
flow
feasible
capacity constraint
conservation constraint
value
maximum flow
minimum flow

Chapter 10

Network Flow

10.1 Network Flow

Given a network of channels together with their capacities and special source
and sink vertices we ask what is the maximum flow from the source to the
sink ?

Definition 48. A network is a directed edge weighted graph with two dis-
tinguished vertices s and t. The edge weights are called capacities and are
non-negative. Vertices s and t are called source and sink .

A flow assigns a value to each edge, f(e). We write f+(s) for the total flow
on edge exiting the set of vertices s. The total flow exiting s is denoted by
f−(s). A flow is feasible if 0 ≤ f(e) ≤ c(e) for all edges e and capacities
c(e), and if f+(v) = f−(v) for each vertex v �∈ {s, t}. These two conditions
are called the capacity constraint and the conservation constraint .

The value of the flow val(f) is

val(f) = f−(t)− f+(t)

,i.e. the net flow into the sink. A maximum flow is a flow minimizing the
value. A minimum flow is a flow minimizing the value.

The problem of finding the maximum flow is of great importance in practice
as many problems may be reformulated in terms of it. The other reason is
that efficient algorithms for finding maximum flows are known. First, we
note:

Theorem 107. A feasible flow always exists.

Proof. f(e) = 0 ∀e.
Thus a maximum flow and minimum flow also always exists.

Let’s look at an example before we continue.

117

118 CHAPTER 10. NETWORK FLOW

cut
capacity

Consider a university with k departments. The President wants to appoint a
committee for some important task. Every department sends one Professor.
Many Professors have joint appointments but each can only be the represen-
tative of one department. The President also wants equal representations
among the three classes of Professor: Assistant, Associate, Full. How shall
we find the committee ?

We construct a single node for each department, each Professor and each
Professorial rank. The source has unit edges to every department which
send unit edges to their ranks which send edges of weight �k/3� to the sink.

The edges from the source to the departments ensure that each department is
represented by exactly one person. The edges leaving Professors (only one
for each) ensure that no Professor represents more than one department.
The three final edges of equal capacity ensure a balanced representation
over seniority. Thus the committee exists if and only if we can find a flow
of value k.

10.2 Cuts and Paths

Definition 49. Given a network N , a cut is a partition of the vertex set
V into two sets S and T such that s ∈ S and t ∈ T . The capacity of the
cut is

c(S, T) =
∑

e−∈S; e+∈T

c(e)

where e− ≡ head of e; e+ ≡ tail of e.

Theorem 108. If N is a network with (S, T) a cut of a feasible flow,

ω(f) =
∑

e−∈S; e+∈T

f(e)−
∑

e+∈S; e−∈T

f(e)

10.2. CUTS AND PATHS 119

augmenting pathand thus, ω(f) ≤ c(S, T).

We use this to get us an algorithm eventually. But first we need to generalize
the notion of augmented path.

Definition 50. An undirected path from s to t in N is an augmenting
path (with respect to the flow f) if f(e) < c(e) and f(e) > 0 holds over any
forward and backward edges respectively.

Theorem 109. A flow f on N is maximum if and only if there exists no
augmenting path.

Proof. Consider the case that f is maximum. Suppose an augmenting
path exists., call it ω. Let d be the minimum of c(e) − f(e) and f(e) over
all forward and backward edges of ω respectively, i.e.

d← min(min
forward edges e∈ω

(c(e)− f(e)), min
backward edges e∈ω

(f(e))) (10.1)

by definition of an augmenting path, d > 0. We define

f ′(e) =

f(e) + d : e forward edge in ω.
f(e)− d : e backward edge in ω.

f(e) : e not in ω.

f ′ is a feasible flow with ω(f ′) = ω(f)+d > ω(f) and thus f is not maximum.
By this contradiction, we have proven the ”only if” part.

Now consider the case when there is no augmenting path. Let S be the
vertex set such that there exists an augmenting path from s to v (including
s itself) and T = V \ S. Then (S, T) is a cut. Thus f(e) = c(e) for all e
with e− ∈ S, e+ ∈ T . Also f(e) = 0 for all e with e+ ∈ S, e− ∈ T . Thus by
the previous theorem ω(f) = c(S, T) and thus f is maximum. �

Theorem 110. A flow f is maximum if and only if the set S �= V and if
this is so then, in addition, ω(f) = c(S, T) where T = V \ S.

Theorem 111. If all capacities are integers, so are all f(e) for some max-
imum flow f .

This is important in practice where we often want to deal only in integral
wholes of things (i.e. the Professors from before).

Note that any computer representation necessarily uses at most rational
numbers. Even these can be made integral by trivial ”change of units”.
Furthermore multi-edges do not matter as we may simply replace them by
a single edge of summed capacity.

The crucial min-max relation follows:

120 CHAPTER 10. NETWORK FLOW

Theorem 112. If f is maximum, its weight is equal to the minimum weight
of a cut.

Thus we do the following to find a maximal flow:

for all edges do
f(e)← 0

end for
while there exists an augmenting path ω = (e1, e2, ..., em) from s to
t with respect to f do

d← min(min
forward edges e∈ω

(c(e)− f(e)), min
backward edges e∈ω

(f(e)))

for all forward edges ei of ω do
f(ei)← f(ei) + d

end for
for all backward edges ei of ω do

f(ei)← f(ei)− d
end for

end while

Algorithm 22: Maximal flow algorithm

This leaves the condition in the while loop to be assessed ...

We now give an algorithm due to Edmonds and Karp to find an augmenting
path.

10.2. CUTS AND PATHS 121

for e ∈ E do
f(e)← 0

end for
label s with (−,∞)
for v ∈ V do

u(v)← false
d(v)←∞

end for
while u(v) = false for some labelled vertex v do

among all vertices with u(v) =false, let v be the one labelled first
for e ∈ {e ∈ E : e− = v} do

if (ω = e+ is not labelled) and (f(e) < c(e)) then
d(ω)← min(c(e)− f(e), d(v))
label(ω)← (v,+, d(ω))

end if
end for
for e ∈ {e ∈ E : e+ = v} do

if (ω = e− is not labelled) and (f(e) > 0) then
d(ω)← min(f(e), d(v))
label(ω)← (v,−, d(ω))

end if
end for
u(v)← true
if t is labelled then

let d be the last component of the label of t
ω ← t
while ω �= s do

let v be the first component of ω’s label
if second component of ω’s label is t then

f(e)← f(e) + d for e = vω

else
f(e)← f(e)− d for e = ωv

end if
end while
delete all labels except the one of s
for v ∈ V do

d(v)←∞
u(v)← false

end for
end if

end while
Let S be the set of all labelled vertices
T ← V \ S

122 CHAPTER 10. NETWORK FLOW

Theorem 113. This algorithm finds a maximum flow f and a minimum
cut (S, T) such that

ω(f) = c(S, T).

Theorem 114. This algorithm has complexity O(|V | |E|2).

Example 36. We use the algorithm of Edmonds and Karp to determine
a maximal flow and a minimal cut in the network N given in Figure 10.1.
The capacities are given in parenthesis; the numbers without parenthesis in
the following figures always give the respective values of the flow. We also
state the labels which are assigned at he respective stage of the algorithm;
when examining the possible labelling coming from some vertex v on forward
edges (steps (6) through (9)) and on backward edges (steps (10) through
(13)), we consider the vertices ω in alphabetical order, so that the course
of the algorithm is uniquely determined. The augmenting path used for the
construction of the flow is drawn bold.

Figure 10.1: A flow network

We start with the zero flow f0, that is, ω(f0) = 0. The vertices are labelled in
the order a, b, f, c, d, t as shown in Figure 10.3; e is not labelled because t is
reached before e is considered. Figures 10.4 to 10.12 show how the algorithm
works. Note that the last augmenting path uses a backward edge, see Figure
10.11. In Figure 10.12, we have also indicated a minimal cut resulting from
the algorithm.

10.2. CUTS AND PATHS 123

Figure 10.2: ω(f0) = 0

Figure 10.3: ω(f0) = 0

124 CHAPTER 10. NETWORK FLOW

Figure 10.4: ω(f1) = 2

Figure 10.5: ω(f2) = 3

10.2. CUTS AND PATHS 125

Figure 10.6: ω(f3) = 10

Figure 10.7: ω(f4) = 17

126 CHAPTER 10. NETWORK FLOW

Figure 10.8: ω(f5) = 19

Figure 10.9: ω(f6) = 20

10.2. CUTS AND PATHS 127

Figure 10.10: ω(f7) = 28

Figure 10.11: ω(f8) = 30

128 CHAPTER 10. NETWORK FLOW

Figure 10.12: ω(f9) = 31 = c(S, T)

10.3 Applications

We have seen the matrix-rounding as an example of where we want to find
a flow. We know one algorithm to get a flow in all possible cases. There
are many other more efficient algorithms either for special cases or that just
make use of more complex ideas. Let’s just look at a few more uses of all
this.

We have set a set of J jobs to be scheduled on M machines. Each job has a
time length pj for processing (in days), a release date rj when this job can
be started and a deadline dj ≥ rj +pj . Each machine can do only one job at
a time and each job can be done on only one machine at a time. We do allow
the jobs to be interrupted and transferred to another machine. Determine
a feasible schedule.

Rank all release and due dates in ascending order and determine the P ≤
2|J | − 1 mutually disjoint intervals between these dates. Let Tk,l represent
the interval between date k and date k + 1.

make a node for each job and interval. Connect the source to the jobs with
capacity pj . Connect the intervals to the sink with capacity (l − k + 1)
representing the total number of machine days available in between k and
l + 1. We connect a job j to an interval Tk,l if rj ≤ k and dj ≥ l + 1 and

10.4. MULTIPLE SINKS AND SOURCES 129

supply
demand
transportation

constraints

the one has capacity (l− k + 1); i.e. if the job can be done in that interval,
we weight it by the maximum number of machine days available in that
interval.

The schedule exists if and only if the maximum flow value is
∑
j
pj . (total

time length)

Example 37.

Job 1 2 3 4
Time 1.5 1.25 2.1 3.6
Release 3 1 3 5
Due 5 4 7 9

The list of dates is 1, 3, 4, 5, 7, 9.
The intervals are T1,2, T3,3, T4,4, T5,6, T7,8.
We have

∑
j
pj = 8.45, and the network is:

10.4 Multiple Sinks and Sources

Consider the case where we have a set X = {xi} of sources and Y = {yi} of
sinks. We also associate a supply σ(xi) and demand δ(yi) to each source
and sink respectively. We also ass the transportation constraints :

f+(xi)− f−(xi) ≤ σ(xi) ∀xi ∈ X (10.2)

130 CHAPTER 10. NETWORK FLOW

net demand f−(yi)− f+(yi) ≥ δ(yi) ∀yi ∈ Y (10.3)

The zero flow is not necessarily feasible.

For a set A of sources (A ⊆ X) and B of sinks (B ⊆ Y)we write

σ(A) =
∑
v∈A

σ(v) ; δ(B) =
∑
v∈B

δ(v). (10.4)

Fora set of edges F , we write:

c(F) =
∑
e∈F

c(e). (10.5)

Given any set of vertices T , the net demand δ(Y ∩ T) − σ(X ∩ T) must
be satisfied by the flow from the other vertices. Thus c([T , T]) has to be at
least as large as this net demand. If this holds true for every T , then we
have a feasible flow.

Theorem 115. A feasible flow exists if and only if

c([S, T]) ≥ δ(Y ∩ T)− σ(X ∩ T)

for every partition of the set of vertices of the network into sets S and T .

Proof. We know that this is necessary. For sufficiently, we construct a
network N ′ from N by adding a super source s and a super sink t.

We add edges from s to xi with capacity σ(xi) and from yi to t with capacity
δ(yi). Then N has a feasible flow if and only if N ′ has a flow saturating
each edge to t, i.e. if and only if N ′ has a flow of value δ(Y).

From before (min cut = max flow) we know that N ′ has this value if and
only if

cap(S ∪ s, T ∪ t) ≥ δ(Y) (10.6)

for each partition S, T of the vertices of N . The cut [S ∪ s, T ∪ t] in N ′

consists of [S, T] from N and edges from s to T and edges from S to t in N ′.

cap(S ∪ s, T ∪ t) = c(S, T) + σ(T ∩X) + δ(S ∩ Y) (10.7)

Thus
cap(S ∪ s, T ∪ t) ≥ δ(Y) (10.8)

if and only if

c(S, T) + σ(X ∩ T) ≥ δ(Y)− δ(Y ∩ S) = δ(Y ∩ T) (10.9)

�
Thus we solve feasible flow in the general situation by the max flow from
before. We can now solve a wide variety of flow problems.

Index

1-factor, 98

unilaterally connected, 62

acyclic, 63, 85
adjacent, 39
anti-symmetric, 15
anty-symmetric, 5
articulation vertex, 42
associative, 14
augmenting path, 119
axiom

of choice, 16
of existence, 7
of extension, 5
of infinity, 12
of pairing, 7
of powers, 9
of specification, 6
of unions, 7

Bar-Yeuda and Even algorithm, 29
Beineke’s Theorem, 79
biconnected, 59
blossom, 108
Bondy Theorem, 62
Bondy-Chratal’s Theorem, 75
Boruvka’s Algorithm, 91
breadth first search, 36
bridge, 42, 63

capacity, 117, 118
capacity constraint, 117
Cartesian Product, 112
cartesian product, 9
Cayley’s Formula, 87
center, 86

Chinese Postman Problem, 67
Chinese-Ring Puzzle, 24
Chratal - Erdos Theorem, 75
Chratal Algorithm, 28
Chratal’s Theorem, 75
chromatic number, 50, 111
chromatic polynomial, 114
circuit, 67
clique, 35, 40
color, 111
color class, 111
color-critical, 111
coloring

proper, 111
commutative, 14
comparable, 15
complement, 8
complete k-partite graph, 44
composite mapping, 12
connected, 34, 59
connectivity, 59
conservation constraint, 117
cut, 118
cut-set, 59
cycle, 17, 35, 67

DAG, 63
decomposition, 89
degree, 35, 43
demand, 129
depth first search, 36
diameter, 86
Dijhstra, 69, 72
directed, 34
disconnected, 59
disconnecting set, 63

131

132 INDEX

disjoint, 8
distributive, 14
domain, 10
dual, 26, 48
duality, 8

eccentricity, 86
edge, 39
edge cover, 100
edge-connectivity, 63
embedding, 11
empty set

existence, 7
end points, 39
equality subgraph, 102
equivalence class, 11
equivalence relation, 11
equivalent, 15
Euler circuit, 67
Euler’s Konigsberg bridge problem,

31

f-factor, 106
factor, 105
feasible, 117
Ferrer diagram, 20
finite set, 15
Fleury’s Algorithm, 72
flow, 117
flower, 108
forrest, 35, 85
four-color theorem, 51
Friendship Graph, 34
function, 11

girth, 35
Graceful Tree Conjecture, 89
graph, 33, 39

disjoint union, 42
bipartite, 40
complete, 40
directed, 39
join, 42
k-partite, 40
non-trivial, 42

oriented, 45
planar, 47
simple, 39
sum, 41
Turan, 44
union, 41

Gray Code, 22
binary, 22

Gray code
binary reflected, 22

greedy, 28
greedy algorithm, 90

h-edge-connected, 63
Haggkvist’s Conjecture, 89
Hamiltonian closure, 75
Hamiltonian Cycle, 67
Hamiltonian cycle, 35
Harary graph, 61
Harary Theorem, 61
head, 39
Heap, B.R., 17
hitting set, 26
Huffman’s Algorithm, 92

identity
map, 11
relation, 33

image, 11
in-degree, 45
incidence matrix, 88
inclusion, 11
independence number, 100
independent set, 40
induced, 11
induction, 17
induction principle, 13
infinite, 15
injection, 11
integer partition, 20
intersection, 8
inverse

map, 11
isolated vertex, 43

INDEX 133

isomorphism, 40

k-chromatic, 111
k-colorable, 111
k-coloring, 111
k-connected, 59
k-critical, 111
k-factor, 105
k-optimal, 82
k-regular, 43
king, 45
Kruskal Algorithm, 90
Kuratowski Theorem, 52

leaf, 85
least element, 15
length, 48
lexicographical order, 18
line graph, 64
loop, 34, 39

M-alternating path, 99
M-augmenting path, 99
marriage

stable, 95
unstable, 95

matching, 95, 98
perfect, 98

maximal element, 15
maximal matching, 99
maximum flow, 117
Menger’s Theorem

Modern, 66
Original, 65

min-max relation, 100
minimality of ω, 13
minimum flow, 117
minimum spanning tree, 90
minimum weighted cover, 102
multiple edges, 39

natural number, 13
net demand, 130
network, 117
NP, 79

NP-complete, 79
NP-hard, 79

odd component, 106
one-to-one, 12
onto, 11
order, 9, 43

well-ordered, 16
partial, 15
total, 16

ordered pair, 9
Ore’s Theorem, 75
orientation, 45
out-degree, 45

P, 79
partition, 11
path, 34
Peano Axioms, 13
pendant, 85
permutation, 17
Petersen graph, 40
Pigeonhole Principle, 86
power, 14
powerset

existence, 9
Prim’s Algorithm, 91
product, 14
proper coloring, 49
Prufer’s Sequence, 87

queue, 36

radius, 86
range, 10
rank, 19, 88
Reconstruction Conjecture, 42
recursion theorem, 13
refelxive, 10
regret, 98
regular, 43
relation, 10
Ringel’s Conjecture, 89
row, 20
Russell’s Paradox, 6

134 INDEX

saturated, 98
set

partition, 27
set cover, 26
set packing, 26
simple cycle, 35
sink, 117
size, 43
source, 117
spanning subgraph, 85
spanning tree, 85
stack, 36
stem, 108
strongly connected, 62
subgraph, 39

induced, 39
successor set, 12
sum, 14
supply, 129
surjective, 11
symmetric, 5, 11
symmetric difference, 103

tail, 39
totally unimodular, 88
tournament, 45
towers of Hanoi, 23
transitive, 5, 11
transportation constraints, 129
transversal, 102
Travelling Salesman Problem, 67
tree, 35, 85

union, 8
universal

relation, 33

value, 117
Venn Diagrams, 8
vertex coloring, 49

Wagner Theorem, 52
weakly conditioned, 62
weight, 34
weighted cover, 102

Whitney’s Theorem, 65
Wiener index, 87

x,y-cut, 65

Young diagram, 20

Zermelo-Fraenkel, 5
Zorn Lemma, 16

