
The Word and Conjugacy Problems in Bn

Patrick D. Bangert∗

May 23, 2004

Abstract

We apply the theory of rewriting systems to the braid groups to solve
the word problem. The theory is extended to cover the rewriting of cyclicly
permuted words which can then be applied to the braid groups to solve
the conjugacy problem. Finally, this solution to the braid conjugacy prob-
lem is shown to be executable in polynomial-time and thus resolves a
long-standing question in low-dimensional topology. This algorithm has
potential in many applications such as cryptography.

Contents

1 Introduction 2

2 The Word Problem in Bn 4

3 Rewriting Systems for Conjugacy Problems 7
3.1 The Idea for Free Groups . 8
3.2 The Cyclic Newman’s Lemma . 10
3.3 The Cyclic Critical Pair Lemma 11

4 The Conjugacy Problem in Bn 13

5 Acknowledgements 15

∗School of Engineering and Science, International University Bremen, P.O. Box 750 561,
28725 Bremen, Germany; p.bangert@iu-bremen.de

1

1 Introduction

The braid group can be defined by its Artin presentation,

Bn = 〈{σi} : σiσj ≈ σjσi, σiσi+1σi ≈ σi+1σiσi+1, 1 ≤ i, j < n, |i− j| > 1〉
(1)

There is a popular geometric interpretation of the generators σi of this group
in which there are n strings all of which are extended vertically upwards with
the exception of the ith and i+1st string that exchange places such that the ith

string is closer to the observer; the order of these strings reverses in the inverse
of the generator σ−1

i . In what follows we shall use the symbol ≈ to mean that
two words in the above generators are equivalent in the sense that one may be
transformed into the other by the relations in Bn and we use the = sign to mean
letter by letter equality.

We may ask the word, conjugacy and Markov problems as follows: Given
two braids a, b ∈ Bn, the word problem asks whether a ≈ b and the conjugacy
problem ask whether there exists a word c ∈ Bn such that a ≈ cbc−1 (we denote
conjugacy by ≈c). For two braids a ∈ Bn and b ∈ Bm, the Markov problem asks
whether it is possible to get from a to b using a finite number of conjugations
and stabilizations (a stabilization is the move a → aσ±1

n or its inverse). It is
clear that the word problem is a special case of the conjugacy problem which is
a special case of the Markov problem.

There is much cause to study these problems for many reasons. Alexander
proved that any knot can be represented as a braid provided that the braid is
closed (its endpoints at both the top and bottom are pairwise identified) [1].
Subsequently, Markov claimed and Birman proved that any two closed braids
(i.e. knots) are ambient isotopic if and only if they are Markov equivalent.
Thus the clearly important problem of knot classification becomes a problem in
combinatorial group theory.

Thus far, no solution to the Markov problem is known. As the word and
conjugacy problems are sub-problems of it, they can be attacked first and have
both been solved many times. The word problem was first solved by Artin in
the same paper that first introduced braids in 1925 [3, 4] whereas the conjugacy
problem was first solved by Garside in 1969 [12]. The best solutions known to
date are presented in [7, 14].

There are many practical applications of algorithms that solve either one of
these problems. A recently prominent application is in group theoretical cryp-
tography in which the encryption keys are group elements [2]. The practicability
of the scheme depends upon the ease of the word problem solution and the se-
crecy upon the difficulty of the conjugacy problem solution. In other words, the
two users must solve a word problem to decrypt the messages and a possible
intruder must solve a conjugacy problem.

Due to these applications, the computational complexity of a solution to the
word and conjugacy problems is important. Let us denote the length of the
braid word a by L(a) and the number of strings (the braid group it belongs to)
by n(a). The most efficient word problem algorithm runs in O(L(a)2n(a)) time

2

[7] whereas all known conjugacy algorithms run in exponential time in both L(a)
and n(a). This seems to indicate that the conjugacy and Markov problems are
intractable and that the cryptographic algorithm alluded to above works. All
attempts at proving the conjugacy problem to be difficult (such as NP-complete
for instance) have not met with success. Indeed, as we will show in this paper,
a polynomial-time algorithm with many ramifications for this problem exists.
This algorithm will thus allow an intruder to decrypt messages in polynomial-
time thus breaking the cipher. It also raises afresh the question of an algorithmic
solution to the Markov problem (i.e. combinatorial knot classification) that
has virtually been abandoned due to the supposed difficulty of the conjugacy
problem.

We use the method of rewriting systems to establish our algorithms [5, 11,
15, 18]. Briefly, such systems consist of a set of rules (for example ab → ba)
that may be used to “rewrite” a string of symbols into another string (with
the previous rule, the string abab is rewritten to baba and then again to bbaa).
The system is locally confluent if, in the situation where more than one rule
is simultaneously applicable, it does not matter which one we choose and it is
confluent if this ambiguity is immaterial for any number of rule applications.
The system terminates if the rewriting process of any word finishes in a finite
number of steps; that is, a word is eventually reached to which no rule can
be applied (above, the state bbaa was reached and the rule may no longer be
applied to it; it is the terminating state). If it is both confluent and terminating,
it is called complete in which case a unique normal form (the final terminating
form) exists [5]. If the arrows in a complete system are replaced by equal signs
(we take the reflexive-transitive-symmetric closure of the rules in question),
then the rewriting system (with its normal form) solves the problem of two
expressions being equivalent under the said equational system, i.e. it solves
the word problem for finitely-presented groups that have a complete rewriting
system. A non-complete system may be made complete using Knuth-Bendix
completion [19].

It is, in general, undecidable whether a rewriting system terminates or is
confluent. If we have a total order (in fact, it can be done with a less restrictive
assumption but we do not need that here) on the alphabet of symbols (or gen-
erators of our group) we are dealing with and each rewrite rule simplifies the
expression with respect to that order, then the system terminates [10]. If the
system terminates, it is confluent if and only if it is locally confluent (Newman’s
Lemma or the Diamond Lemma) [21]. Moreover there is a mechanical method
for checking if a terminating system is locally confluent [13].

Given a rewrite system as a set of pairs (left and right-hand sides of rewrite
rules) R = {li, ri} we define an overlap to be a word w = abc such that ab is
a particular instance of an li (the li and ri may contain variables and so have
different instances) and bc is a particular instance of a different lj for some words
a, b and c. This overlap may be rewritten in two distinct ways (using the rules
li → ri and lj → rj) and the pair is called critical if these two ways are not
equivalent in the equational system obtained by taking the reflexive-transitive-
symmetric closure. It is obvious that a system with critical pairs is not confluent

3

as the two reducts are not equivalent and it is the statement of the Critical Pair
Lemma that a system is locally confluent if and only there exist no critical pairs
[17]. If the system has critical pairs, we may add them as an extra rule to the
system in an effort to make it complete; this is the essence of Knuth-Bendix
completion [19].

2 The Word Problem in Bn

First, we wish to solve the word problem by the outlined methods. We begin
with the braid group and form the associated monoid from it by adding the in-
verse relations to the braid relations and also augmenting this monoid by adding
the relation that gives the generator of the center of Bn (∆2

n = (σ1σ2 · · ·σn−1)
n

[8]),

M+ (Bn) = 〈{σ±1
1 , σ±1

2 , · · · , σ±1
n−1,∆

±2
n } : ∆±2

n σi = σi∆±2
n ;

∆±2
n ∆∓2

n = σ±1
i σ∓1

i = e;

σ±1
i σ

±1/∓1
j = σ

±1/∓1
j σ±1

i for |i− j| > 1;

σ±1
i σ±1

i+1σ
±1
i = σ±1

i+1σ
±1
i σ±1

i+1 〉

(2)

The reason for doing this is that this choice will allow a complete rewriting
system to be deduced. It should be clear that if we are successful in solving the
word and conjugacy problems in M+(Bn), then the problems in Bn are solved.
For convenience, we define

ai,j = σiσi+1 · · ·σj (3)
di,j = σiσi−1 · · ·σj (4)

We now define a total order <b on the letters of our alphabet

∆2
n <b ∆−2

n <b σ1 <b σ2 <b · · · <b σn−1 <b σ−1
1 <b σ−1

2 <b · · · <b σ−1
n−1 (5)

Having formulated the problem thus, we start the machinery described above to
obtain our rewrite rules. In practice, this process is laborious and would occupy
prodigious space if described in detail. For this reason, we will simply state the
result and prove it to be correct.

For what follows, we shall represent a braid of the form ∆2k
n P as the pair

(k, P). The reason for this is to effectively remove from the braid, in the process
of rewriting, any sub-braid which lies in the center of the braid group Bn.
The reason for this will become apparent when we extend our solution to the
conjugacy problem. Removing any ∆2k

n from any part of a braid can be done
without loss of information because ∆2

n is the generator of the center of Bn and
thus its position is irrelevant. By Knuth-Bendix completion and the necessary

4

manual labor, we obtain the following rewriting system.

Wn = { (1) σ−1
i →

i−1∏

j=1

[dj,1a1,j] di,1a1,i−1

n−1∏

j=i+1

[dj,1a1,j] & k → k − 1;

(2) σiσj → σjσi for j < i− 1;
(3) σiσi−1Pσi → σi−1σiσi−1P ;

(4) σiσi−1Qσi−1Rdi,j → σi−1σiσi−1Qdi−1,jσiR
+ for j < i;

(5)
n−1∏

i=1

di,1a1,iSi →
n−1∏

i=1

Si & k → k + 1 }

(6)

The variables P , Q, R and Si are (possibly empty) words in the generators σk

(and not their inverses σ−1
k) subject to the restriction that the highest generator

index k is i − 2, i − 2, i − 1 and i respectively and the lowest generator index
in R is j, where i and j refer to the values of the generator indices of the
respective rules. The word R+ is obtained from R by increasing all generator
indices in R by one. Note that rules 1 and 5 require two replacements to be
made simultaneously. Rules 1 and 5 are simple to understand; the other rules
are illustrated in figure 1.

Theorem 2.1 Wn is complete and thus solves the word problem for Bn.

Proof.(termination) Every application of Wn simplifies the word with respect
to <b. As <b is well-founded, Wn terminates.

(local confluence) There are 20 overlaps between the rules in Wn and none
give rise to a critical pair. For reasons of space, we do not provide all the
reduction steps for each overlap but list all overlaps, the rules from which they
arise and the common reduct of all reduction paths of the overlap in table 1. The
restrictions on the indices and the variables are obvious from the context and
the definition of Wn. The dedicated reader may easily but laboriously verify
that the list is both complete and correct. There are an additional 16 (four
variables and four positive redexes) variable overlaps, i.e. overlaps in which a
variable completely contains a redex, but these resolve trivially and so are not
listed in the table. By the Critical Pair Lemma, we thus conclude that the
system is locally confluent.

(confluence) As the system terminates and is locally confluent, Newman’s
Lemma allows us to conclude that the system is confluent and thus complete.

(equivalence) We now need to demonstrate that when the arrows are replaced
by equal signs, we retrieve the monoid’s relations exactly. Rules 2 and 3 imply
both braid group relations. Rule 5 represents the definition of ∆2

n in terms of the
σi. The second parts of rules 1 and 5 imply that ∆2

n and ∆−2
n are inverses. Rule

1, after use of the braid group relations, the definition of ∆2
n and ∆−2

n indicates
that σi and σ−1

i are inverses. All (and only) the relations in the monoid M+(Bn)
are thus contained in Wn. Birkhoff’s theorem thus tells us that this system is
equivalent to the monoid M+(Bn). As it is complete as well, it thus solves the
word problem by reducing each word to its normal form. �

5

Rule 2:

Rule 3:

Rule 4:

Figure 1: Rules 2, 3 and 4 of TRS Wn illustrated.

The rules of a rewrite system are to be applied in a non-deterministic way
and a complete rewrite system always reaches the unique normal form no matter
what strategy of rule application is chosen [5]. Since Wn is complete and all
strategies are equivalent, we will choose the following strategy.

Algorithm 2.2 Input: A word w ∈ Bn. Output: A word w′ ∈ Bn which is the
unique representative of the equivalence class of w.

1. Apply rule 1 of Wn as many times as possible.

2. Apply rules 2, 3, 4 and 5 of Wn as many times as possible in order pro-
ceeding to the next rule only if the current can no longer be applied.

3. Loop step 2 until no rule may be applied to the word at all. In this case
w′ has been found.

6

It is clear that algorithm 2.2 solves the word problem from the completeness
of Wn and the fact that once rule 1 is applied as many times as possible, it
can not be applied again no matter what other rewrite steps follow as there will
be no more inverse generators. From this algorithm, we are able to deduce the
computational complexity of this word problem solution.

Theorem 2.3 Wn solves the word problem for any word w ∈ Bn with complex-
ity O

(
L(w)2n(w)4

)
.

Proof. Suppose that w contains exactly m inverse generators. Rule 1 may
be applied exactly m times; note that m goes as O(L(w)). We must search
the word for the redexes of rule 1 and then replace them. Searching is an
O(L(w)) operation but the reducts increase in length as O(n(w)2) and thus the
application of rule 1 takes time O(L(w)n(w)2). It is clear that rule 1 may never
be applied again and the word length of w is now L2(w) = L(w)+mn(w)(n(w)−
1) −m = O

(
L(w)n(w)2

)
. Rule 2 may be applied a number of times bounded

by L2(w)2 as it is a pairwise comparison between all generators in the word at
worst. An application of rules 3 and 4 may give rise to a further application
of itself or the other rule but strictly later in the word and thus the number of
times they may be applied is bounded by L2(w). While rules 2, 3 and 4 keep
the word length constant, rule 5 reduces it by n(w)(n(w) + 1) and thus rule 5
may be applied a maximum of

L(w) + mn(w)(n(w)− 1)−m

n(w)(n(w) + 1)
=

O
(
L(w)n(w)2

)

O (n(w)2)
= O (L(w)) (7)

times. Thus the total worst-case complexity of the algorithm is O(L2(w)2) =
O(L(w)2n(w)4). The application of rule 2 is responsible for the quadratic be-
havior in the length; it is the bottleneck of the calculation. �

We have already noted that the most efficient algorithm known has com-
plexity O(L(w)2n(w)) and so our algorithm is slower by a factor of n(w)3 [7].
The purpose of presenting it here is (1) that this algorithm is very easy to un-
derstand and apply as it is just a set of five rewrite rules (past algorithms were
much more involved) and (2) that this algorithm generalizes to the conjugacy
case.

3 Rewriting Systems for Conjugacy Problems

We wish to extend the rewriting system above to the case of conjugacy and,
as some labor will show, this is not possible using existing methods. Thus, the
theory of rewriting systems must be slightly extended to deal with this case and
this is what we shall do in this section. It will be apparent that these methods
are applicable to a wide range of groups and is certainly not restricted to the
braid groups.

7

We first describe the idea and then give the details of the method. We find
that the notion of completeness generalizes to the new setting and then proceed
to prove that the conditions for completeness also generalize. This leaves us
with the construction of two methods; namely the checking for termination and
critical pairs. For the new setting such methods are given and proved correct.
All we now have to do in a particular setting is check these two conditions; if
they hold we have a valid conjugacy problem solution. At the end of the paper
we actually check them for the braid group and find them to hold.

3.1 The Idea for Free Groups

First, we shall illustrate the idea behind the extension and then work out the
details. Suppose that G = Fn the free group of rank n. This group is generated
by n elements {fi} for 1 ≤ i ≤ n and no relations [16]. A general word w ∈ Fn

takes the form
w = fp1

s1
fp2

s2
· · · fpm

sm
, 1 ≤ sk ≤ n (8)

Since there are no relations in Fn, the word w is unique over its equivalence
class if and only if si �= si+1 for all i. This condition is trivially obtained from
any word w ∈ Fn by applying the (obviously) complete rewriting system

Rw (Fn) = {fp
s fq

s → fp+q
s , ∀1 ≤ s ≤ n} (9)

Thus Rw (Fn) solves the word problem in any free group Fn. Moreover, it does
so in a time proportional to L(w).

Consider now the conjugacy problem in Fn. We define the ith cyclic permu-
tation Ci(w) of a word w in the general form of equation (8) by

Ci(w) = f
p′

j
sj · · · fpm−1

sm−1
fpm

sm
fp1

s1
fp2

s2
· · · fp′′

j
sj (10)

such that

p′j +
m∑

k=j+1

pk = i (11)

Intuitively, the ith cyclic permutation is obtained by taking the last i generators
in the word w and moving them to the front of the word one by one.

Definition 3.1 Two words w and w′ are cyclicly permutable (denoted ≈cp) if
and only if there exists a finite sequence of moves from w to w′ where each move
is a cyclic permutation or a word equivalence move in the group.

Remark 3.2 Two words are cyclicly permutable therefore, if one can be moved
into the other by cyclic permutation and by word equivalence moves. Let us
consider an alphabet of three letters a, b and c with the equation ab = bc. Then
abc ≈cp bca as the right-hand side is the second cyclic permutation of the left-
hand side. We also have that abc ≈cp bcc by not permuting at all but applying
a word equivalence. Finally, it is obvious that cyclic permutability forms an

8

equivalence relation for any group G. We give this example to make the def-
inition clear lest it cause confusion in connection with the statement that the
equivalence relation of cyclic permutability is the same as that of conjugacy (see
the proposition below). Conjugating the word w with the word q is nothing more
than appending qq−1 to the end of w and then moving the last L(q) letters to
the front of the word. Thus this proposition should be clear now.

Proposition 3.3 For any group G and any two words w,w′ ∈ G, we have
w ≈cp w′ if and only if w ≈c w′.

Proof. Any group G has a presentation which may be obtained from some free
group Fn of rank n by adding relations [9]. Moreover, if the conjugacy problem
is solvable in one representation, it is solvable in all [20]. Suppose w ≈cp w′,
then there exists an i for which

w′ ≈ Ci(w) = f
p′

j
sj · · · fpm−1

sm−1
fpm

sm
fp1

s1
fp2

s2
· · · fp′′

j
sj (12)

where

p′j +
m∑

k=j+1

pk = i (13)

Let
γ = fp1

s1
fp2

s2
· · · fp′′

j
sj (14)

Then

w′ ≈ f
p′

j
sj · · · fpm−1

sm−1
fpm

sm
γ (15)

≈ γ−1γf
p′

j
sj · · · fpm−1

sm−1
fpm

sm
γ (16)

≈ γ−1wγ (17)

Thus we have w ≈c w′. Now suppose w ≈c w′, then there exists a γ such that

w′ ≈ γ−1wγ (18)

If the word length of γ is L(γ), then we have

CL(γ)(w′) ≈ γγ−1w ≈ w (19)

Thus w ≈cp w′. �

The idea that gave rise to this definition and the following results is that
the troublesome aspect about generalizing a word problem rewrite system to a
conjugacy one is the fact that words have a first and last letter where conjugacy
allows these to be changed freely. Thus a form is needed that captures this
freedom or ambiguity of a beginning of the word and one form that works is
that of cyclic permutability. Pictorially this can be viewed as no longer writing
a word linearly but circularly; it being understood that the order of the letters
is preserved and only the identity of the first letter is lost (see figure 2).

9

Figure 2: The word w given in equation (8) bent into a circle. While the
circularity removes the notions of beginning and end of a word, it preserves the
directionality of it.

Definition 3.4 From a word w, we form the cyclic word c(w) that is a set
having as its members Ci(w) for all 0 ≤ i < L(w).

We further define that a rewrite rule is applicable to a cyclic word c(w) if it
is applicable normally to at least one of its members, w′ ∈ c(w) say. If a rewrite
rule is applicable, let the member w′ of the cyclic word c(w) be rewritten in the
standard way and then let c(w) be replaced with c(w′) where w′ is understood
to have been rewritten. This method of letting a rewrite system act on a cyclic
word allows us to forget about conjugacy moves as we shall see.

A rewrite system is called cyclicly locally confluent, cyclicly confluent and
cyclicly terminating if it is locally confluent, confluent and terminating respec-
tively for cyclic words with the above method of application in mind. Further-
more, a rewrite system is cyclicly complete if it is both cyclicly confluent and
cyclicly terminating. The above discussion proves the following theorem.

Theorem 3.5 A given cyclicly complete rewrite system solves the conjugacy
problem for the group with the given alphabet as generators and the relations
obtained from the rewrite rules by taking the reflexive-transitive-symmetric clo-
sure.

This leaves us with deciding when a rewrite system is cyclicly complete.
It turns out that Newman’s Lemma and the Critical Pair Lemma generalize
to the cyclic scenario and so: cyclic local confluence implies confluence if the
system cyclicly terminates and the cyclic local confluence can be checked by
the absence of critical pairs (including now a further cyclic critical pair). The
following section will be devoted to proving these results.

3.2 The Cyclic Newman’s Lemma

Newman’s Lemma generalizes to the cyclic case without much modification.

Lemma 3.6 A cyclicly terminating rewrite system is cyclicly confluent if and
only if it is cyclicly locally confluent.

10

Figure 3: The proof of Newman’s Lemma (lemma 3.6) in diagrammatic form.
We begin at the top with a local divergence which is rectifiable by assumption
and thus by induction any global divergence is also rectifiable. It is because of
this diagrammatic proof that Newman’s Lemma is also known as the Diamond
Lemma.

Proof. This proof is similar to the one given for the standard Newman Lemma
in [13]. The result is obvious from figure 3. If → is a rewrite rule, then ← is its
inverse and →∗ its reflexive-transitive closure.

(if) We want to show that if y ←∗ x →∗ z, then the final forms of y and z
are identical, which exist since the rewrite system cyclicly terminates. If x = y
or if x = z, the result is obvious. If x→ y1 →∗ y and x→ z1 →∗ z, then there
exists a u such that y1 →∗ u←∗ z1 by cyclic local confluence. The existence of
a w such that y →∗ w ←∗ z follows by induction over arbitrary length rewriting
paths; the finiteness of all rewriting paths is attested to by cyclic termination.

(only if) This it trivial as cyclic local confluence is subsumed by cyclic con-
fluence. �

If we can show cyclic termination, we need to check cyclic local confluence.
The Critical Pair Lemma can help here.

3.3 The Cyclic Critical Pair Lemma

The Critical Pair Lemma states that a rewrite system is locally confluent if and
only if it has no critical pairs. Recall that a critical pair arises from an overlap
of two redexes in a word which gives rise to a local divergence of rewriting
paths which do not meet again. Given a rewrite system R = {(li, ri)}, a cyclic
overlap is a cyclic word c(w) = c(abcd) such that abc = ρli and cda = ηlj for
some words a, b, c and d, two (possibly equal) integers i and j and substitutions
ρ and η. The cyclic overlap c(abcd) is rewritten to both c(ρrid) and c(bηrj). A
cyclic overlap is non-critical if the reducts are joinable, c(ρrid)↔� c(bηrj) and

11

critical otherwise. A cyclic critical pair is the (unordered) pair of cyclic words
(c(ρrid), c(bηrj)) which arises from a cyclic critical overlap. It is obvious that if
R contains cyclic critical pairs, it can not be cyclicly confluent.

For example, consider the rewrite system R = {abxba → cxc} over the
alphabet A = {a, b, c} and some variables x and y. Clearly R contains the
cyclic critical overlap abxbabyb which is to be rewritten into bxbcyc and cxcbyb.
This cyclic critical pair may be resolved by noting that if the variable contained
between the c letters is less than the other, it is that cyclic word which is to
be preferred under the lexicographic order c < b < a. That is, we have to add
a conditional rule depending on the relative value of the variables. This global
rule must be applied, if applicable, with preference over the ordinary local rule.
In this way we have extended Knuth-Bendix completion to the cyclic case; note
that all rules added in this procedure are global (i.e. are to be applied to the
entire word) whereas the usual rules of normal TRS’s are local (i.e. are to be
applied to a sub-word). We shall now prove the extension of the Critical Pair
Lemma for the cyclic case.

Lemma 3.7 A TRS R = {(li, ri)} is cyclicly locally confluent if and only if it
contains neither critical nor cyclicly critical pairs.

Proof. We consider all relative positions of two redexes li and lj in a cyclic
word w and analyze them in turn. The first four cases occur in the standard
Critical Pair Lemma but in the cyclic case there are five cases:

1. (disjoint) Suppose c(w) = c(lixljy) for some words x and y. The existence
of the common reduct c(rixrjy) is obvious; see figure 4 (a).

2. (variable overlap) Suppose li contains a variable which contains lj as a
sub-term. If lj → rj does not change the applicability of li, a common
reduct is obvious. If it does and the divergence does not resolve, we have
an instance of a critical pair; see figure 4 (b).

3. (critical overlap) Suppose li and lj have a critical overlap. A critical pair
exists and obviously prevent local confluence; see figure 4 (c).

4. (orthogonal) Suppose li and lj have a non-critical overlap. By definition
the divergence resolves; see figure 4 (d).

5. (cyclical critical overlap) Suppose li and lj have a cyclic overlap. If it
is critical, we have an instance of a cyclic critical pair which obviously
prevents cyclic local confluence. If it is non-critical, a common reduct
exists by definition; see figure 4 (e).

�

12

4 The Conjugacy Problem in Bn

The preceding section proved that a rewrite system will solve the conjugacy
problem in a group G if the reflexive-transitive-symmetric closure of its rules
(the replacement of arrows with equal signs) is identical to the group’s relations
and provided that the rewrite system cyclicly terminates and has no critical
pairs (normal or cyclic).

For the braid groups Bn, we have a working word problem solution in the
form of a rewrite system. If it were cyclicly complete, we would have a conjugacy
problem solution. It is not cyclicly complete but it can be made so.

In table 2, we list all four cyclic overlaps between the rules of Wn and the
two final forms per overlap depending on the chosen rewrite path. Note that
all overlaps are critical and that the cyclic overlap refers to the entire cyclic
word. According to our extended form of Knuth-Bendix completion, we must
orient these cyclic critical pairs and add the resulting rules as global rules to
the rewrite system. Consider the rewrite system Gn below which is understood
to contain only global rules for cyclic words, i.e. the entire word has to be
matched to redexes in Gn. The restrictions on the variables are identical to
those of Wn. The ordering <s is the standard shortlex ordering, i.e. words are
sorted lengthwise first and then lexicographically using <b.

Gn = { (1)
n−1∏

i=1

(di,1a1,iSi)→
n−1∏

i=1

Si;

(2) σiσi−1Pσiσi−1P
′ → σi−1σiσi−1Pσi−1P

′ if P <b P ′

or σi−1σiσi−1P
′σi−1P if P ′ ≤b P ;

(3) σiσi−1Qσi−1Rσiσi−1P → σi−1Qσi−1Rσi−1σiσi−1P ;
(4) σiσi−1Q1σi−1R1σiσi−1Q2σi−1R2 →
σi−1σiσi−1Q1di−1,jσiR

+
1 Q′

2σi−1R2 if R1 <s R2

or σi−1σiσi−1Q2di−1,jσiR
+
2 Q′

1σi−1R1 if R2 ≤s R1 }

(20)

As described in the solution to the word problem, we will regard a cyclic word
c(w) as a pair c(w) = (k, c(ws)). The first entry is an integer counting the
number of copies of ∆2

n in c(w). The second entry is the rest of the word
written in the σi. We shall now present an algorithm for the conjugacy problem
in terms ofWn and Gn. We prove, in a set of lemmas, that this algorithm solves
the conjugacy problem in Bn.

Algorithm 4.1 Input: A cyclic braid word c(w). Output: A set of cyclic braid
words together with an integer that collectively are a unique representative of
the conjugacy class of w.

1. Apply rule 1 of Wn as many times as possible.

2. Test if w is splittable, i.e. if it is in the form w = w1w2 where w1 commutes
with w2. If it is, separate w1 and w2 and treat them separately from now

13

on. If not, do nothing. Note that we are testing the linear word w and
not c(w).

3. Apply any rule in Gn or rules 2 to 4 ofWn, in that order of priority, exactly
once to each of the separated cyclic braid words, if possible.

4. Go back to step 2 of the algorithm and continue until there is no braid
word which may be split further and no braid word to which any of the
rules in Wn and Gn are applicable.

5. The integer k and the set of split braid words are now collectively the
unique representative required.

We note that because of the restrictions on the variable Sn−1, rule 5 of Wn

and rule 1 of Gn are identical. It is obvious from the algorithm that if it cyclicly
terminates andWn∪Gn is cyclicly confluent, then the conjugacy problem in Bn

is solved by it. Note that the splitting is valid as we have made the replacement
of every inverse generator by inverses of elements of the center and generators
in step 1, this replacement is the content of rule 1 of Wn.

Lemma 4.2 Algorithm 4.1 cyclicly terminates in O(L(w)4n(w)9) time, where
w is the initial braid word.

Proof. As previously argued (see the proof of theorem 2.3), the execution of
step 1 of the algorithm terminates after O(L(w)n(w)2) time and increases the
word length to L2(w) = L(w) + mn(w)(n(w)− 1)−m = O(L(w)n(w)2).

Testing splittability is a word problem and can thus be done in O(L2(w)2n(w))
[7]. As no rule, applied later in the algorithm, increases the length of the word,
the number of times that splitting may be done is bounded by L2(w).

The application of the local rules terminates as previously shown with com-
plexity O(L2(w)2) on linear words. They also terminate here because whenever
an infinite rewriting (due to the commutation relation) would be possible, we
split the braid word into two. Thus the complexity bound applies here as well.

The global rules either decrease or increase the generator index total of the
word. Therefore their application must terminate independently bounded by
O(L2(w)n(w)) as total possible generator index count is bounded by this. The
impossibility of interference (first lowering and then raising the total) is clear
from the fact that all rule overlaps are rules themselves.

As any one application of either a split, local rule or global rule may trigger
the application of another one of those three, the complexity of the algorithm is
the product of the partial complexities, i.e. O(L2(w)4n(w)) = O(L(w)4n(w)9).
�

Lemma 4.3 Algorithm 4.1 is cyclicly confluent.

Proof. By theorem 2.1, Wn is confluent and thus contains no critical pairs.
Algorithm 4.1 uses Gn as well as Wn. By construction, Gn resolves all the

14

cyclic critical pairs of Wn but, as may be easily verified, introduces no further
critical pairs or cyclic critical pairs. By lemma 3.7 this is a necessary and
sufficient condition for cyclic local confluence. By lemma 4.2, the algorithm
cyclicly terminates and so, by lemma 3.6, the algorithm is confluent. �

Lemma 4.4 Algorithm 4.1 solves the conjugacy problem in Bn with computa-
tional complexity O(L(w)4n(w)9).

Proof. The algorithm cyclicly terminates with complexity O(L(w)4n(w)9) and
the application of the rules is cyclicly confluent and thus satisfies all the criteria.
We must now show that the reflexive-transitive-symmetric closure of the rules
is equivalent to the braid group with conjugacy. This is obvious apart from the
splitting step in the algorithm. That splitting is correct is obvious too but what
remains to be proven is if splitting is confluent with respect to all the other
rules, i.e. that it does not matter whether we split first and then apply some
rules or vice-versa.

Clearly splitting can be modelled using rewrite rules and splitting terminates.
Thus it is confluent with respect to the others if it is locally confluent; or, has no
critical pairs. The absence of critical pairs can be verified easily but laboriously
by checking the local and global rewrite rules. �

The result of the rewrite chain is a normal form for the braid word but not in
the usual sense as we have a set of words that make up the normal form. To test
equality between two normal forms, we must compare pair-wise the elements of
the normal form which can be done in quadratic time in the length of the word
and constant time in the braid group index. Moreover, these methods can be
applied to many groups other than the braid groups.

5 Acknowledgements

My warm thanks go to Mitchell Berger, Michael Anshel, Reza Tavakol and Wyn
Evans who spent much effort reading and checking the manuscript.

References

[1] Alexander, J. W. 1923 A lemma on systems of knotted curves Proc. Nat.
Acad. Sci. USA 9, 93 - 95.

[2] Anshel, M., Goldfeld, D., Anshel, I. 1999 An Algebraic Method for Public-
Key Cryptography Math. Res. Lett. 6, 1 - 5.

[3] Artin, E. 1925 Theorie der Zöpfe (in German) Abh. Math. Sem. Univ.
Hamburg 4, 47 - 72.

[4] Artin, E. 1947 Theory of braids Ann. Math. 48, 101 - 126.

15

[5] Baader, F. and Nipkow, T. 1998 Term Rewriting and All That (Cambridge
University Press, Cambridge).

[6] Bangert, P. D., Berger, M. A. and Prandi, R. 2002 In Search of Minimal
Random Braid Configurations J. Phys. A: Math. Gen. 35, 43 - 59.

[7] Birman, J. S., Ko, K. H. and Lee, S. J. 1998 A New Approach to the Word
and Conjugacy Problems in the Braid Groups Ad. Math. 139, 322 - 353.

[8] Chow, W. L. 1948 On the algebraic braid group, An. Math. 49, 654 - 658.

[9] Coxeter, H. S. M. and Moser, W. O. J. 1957 Generators and Relations for
Discrete Groups (Springer, Berlin).

[10] Dershowitz, N. 1979 A note on simplification orderings Inform. Proc. Let.
9, 212 - 215.

[11] Dershowitz, N. and Jouannaud, J.-P. 1990 Rewrite Systems in Handbook of
Theoretical Computer Science Volume B: Formal Methods and Semantics
ed. by van Leeuwen, J. (North-Holland, Amsterdam), 243 - 320.

[12] Garside, F. A. 1969 The braid group and other groups Quart. J. Math.
Oxford 20, 235 - 254.

[13] Huet, G. 1980 Confluent reductions: Abstract properties and applications
to term rewriting systems J. Assoc. Comput. Mach. 27, 797 - 821.

[14] Jacquemard, A. 1990 About the effective classification of conjugacy classes
of braids J. Pure Appl. Al. 63, 161 - 169.

[15] Jantzen, M. 1997 Basics of Term Rewriting, in Handbook of Formal Lan-
guages Volume 3: Beyond Words ed. by Rozenberg, G. and Salomaa, A.
(Springer, Heidelberg), 269 - 338.

[16] Johnson, D. L. 1980 Topics in the Theory of Group Presentations Lon.
Math. Soc. Lec. Notes Vol. 42 (Cambridge Uni. Press, Cambridge).

[17] Jouannoud, J.-P. and Kirchner, H. 1986 Completion of a set of rules modulo
a set of equations SIAM. J. Comp. 15, 1155 - 1194.

[18] Klop, J. W. 1987 Term rewriting systems: A tutorial, Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 32, 143 - 183.

[19] Knuth, D. E. and Bendix, P. B. 1970 Simple word problems in universal
algebras in Computational Problems in Abstract Algebra ed. by Leech, J.
(Pergamon Press, Oxford), 263 - 297. Reprinted in 1983 in Automation of
Reasoning 2 (Springer, Berlin), 342 - 376.

[20] Miller, C. F. III 1992 Decision Problems for Groups - Survey and Reflec-
tions in Algorithms and Classification in Combinatorial Group Theory ed.
by Baumslag, G. and Miller, C. F. III, Math. Sci. Re. Inst. Pub. Volume
23 (Springer, New York), 1 - 59.

16

[21] Newman, M. H. A. 1942 On theories with a combinatorial definition of
’equivalence’ Ann. Math. 43, 223 - 243.

17

Table 1: Overlaps between rules in Wn. (The ellipses, · · · , indicate line breaks
and not pattern continuation signs.)

→ Overlap Final Form
2, 2 σiσjσk σkσjσi

2, 3 σiσjσj−1Pσj σj−1σjσj−1Pσi

2, 3 σiσi−1σjPσi σjσi−1σiσi−1P
2, 3 σiσi−1Pσiσj σi−1σiσi−1Pσj

2, 4 σiσjσj−1Qσj−1Rdj,k σj−1σjσj−1Qdj−1,kσjR
+σi

2, 4 σiσi−1σkQσi−1Rdi,j σkσi−1σiσi−1Qdi−1,jσiR
+

2, 4 σiσi−1Qσi−1Rdi,jσk σi−1σiσi−1Qσkdi−1,jσiR
+

2, 5
n−1∏
i=1

di,1a1,iSi;Sj = σkS′
j

n−1∏
i=1

Si;Sj = σjS
′
j

3, 3 σiσi−1Pσiσi−1P
′σi σi−1σiσi−1Pσi−1P

′σi

3, 4 σiσi−1Pσiσi−1Qσi−1Rdi,j σi−1σiσi−1Pσi−1Qσi−1Rdi,j

3, 4 σiσi−1σi−2Pσi−1R · · · σi−2σi−1σi−2σiσi−1σi−2P · · ·
· · ·σi−2R

′σi−1R
′′di,j · · ·Rdi−2,jσi−1R

′+σiR
′′+

3, 4 σiσi−1σi−2Pσi−1Rσi−1R
′di,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,jσiR

′+

3, 4 σiσi−1σi−2Pσi−1Rσi−2R
′di,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,jσi−1R

′+

3, 4 σiσi−1σi−2Pσi−1Rdi,j σi−2σi−1σi−2σiσi−1σi−2PRdi−2,j

3, 4 σiσi−1Pσi−1Rdi,jR
′σk σi−1σiσi−1Pdi−1,jσiR

+R′σk

3, 5
n−1∏
i=1

di,1a1,iSi;Sj = σj−1PσjS
′
j

n−1∏
i=1

Si;Sj = σj−1PσjS
′
j

4, 4 σiσi−1Qσi−1Rdi,jQ
′σk−1R

′dk,m σi−1σiσi−1Qdi−1,jσiR
+Q′σk−1R

′dk,m

4, 4 σiσi−1σi−2Qσi−2Rdi−1,jQ
′di,k σi−2σi−1σi−2σiσi−1σi−2Q · · ·

· · · di−2,kdi−1,j+1σiR
++Q′+

4, 4 σiσi−1Qσi−1Rdi,j σi−1σiσi−1Qdi,jσiR
+

4, 5
n−1∏
i=1

di,1a1,iSi

n−1∏
i=1

Si

Sj = σj−1Qσj−1Rdj,kS′
j Sj = σj−1Qσj−1Rdj,kS′

j

18

(a) (b)

(c) (d)

(e)

Figure 4: The proof of lemma 3.7 in its four cases: (a) the disjoint case, (b) the
variable overlap case, (c) the critical overlap case, (d) the orthogonal case, (e)
the circular critical overlap case.

19

Table 2: Cyclic overlaps between rules in Wn.

→ Cyclic Overlap Final Forms

2, 2
n−1∏
i=1

(di,1a1,iSi)
n−1∏
i=1

Si

& Sn−1 = S′
n−1σk; 3 ≤ k < n σ1σkσ1S1

n−2∏
i=2

(di,1a1,iSi) dn−1,1a1,n−1S
′
n−1

3, 3 σiσi−1Pσiσi−1P
′ σi−1σiσi−1Pσi−1P

′

σi−1σiσi−1P
′σi−1P

3, 4 σiσi−1Qσi−1Rσiσi−1P σi−1Qσi−1Rσi−1σiσi−1P
& P = di−2,jP

′ σi−1σiσi−1Qdi−1,jσiR
+P ′

4, 4 σiσi−1Q1σi−1R1σiσi−1Q2σi−1R2 σi−1σiσi−1Q1di−1,jσiR
+
1 Q′

2σi−1R2

& Q1 = di−2,jQ
′
1; Q2 = di−2,jQ

′
2 σi−1σiσi−1Q2di−1,jσiR

+
2 Q′

1σi−1R1

20

