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Abstract

The well-known cosine theta magnet is analysed for magnetic
field uniformity. We surround the magnet with a superconduct-
ing shield and study the impact on the uniformity. We find an
equation for the uniformity as a function of principal magnet and
shield parameters. We also find that penetrations in the shield
and indeed the presence of the shield do not significantly alter

the uniformity properties of the cosine theta magnet.

PACS: 85.70, 07.55, 07.55.N

Keywords: Magnet, Uniformity, Field



1 Introduction

Experiments often demand a uniform magnetic field over an extended region
of space for experiments. Several configurations of magnets have been built
over the years to match this task. One that seems to enjoy particular favor
for fields perpendicular to the axis of a cylinder is the so called cos(f) magnet.
This is a cylindrical magnet whose wires are on the surface of a cylinder in a
cosine distribution of the azimuthal angle # around the cylinder. This type
of magnet is well known amongst physicists. However, the literature on its
properties is very slim. The reader may look in the literature for a calculation
of the different multipole strengths [1], a practical design and construction [2]
and [3], a comparison to different experimental [4] and theoretical designs [5].
However, the literature does not discuss the uniformity of the magnetic field,
a gap we attempt to bridge by presenting both an analytical and numerical
model of the magnet.

This paper is motivated by the experimental need for such a magnetic field
in a Neutron Electric Dipole Moment (EDM) experiment at the Los Alamos
National Laboratory [6]. The experiment plans to use a superconducting
quantum interference device (SQUID) coupled to a large superconducting
pick-up loop as part of its magnetometry. This loop must be shielded from
stray fields and so a superconducting shield is placed around the cylinder
carrying the magnet and pick-up loop. The three questions to be answered
are: What are the dimensions of the magnet required to produce a uniformity

of 0.1 percent over the dimensions (10e¢m radius and 10cm height) of the



measuring cell? How large is the deviation from this uniformity introduced

by a superconducting shield? What is the effect of penetrations in the shield?

2 The Cosine Magnet

We begin by selecting the current density to be in the aforementioned cosine

distribution together with a delta function which indicates the presence of

Fig. 1. The experimental schematic of the EDM experiment.

In Cartesian coordinates in which the k axis is along the axis of the cylinder,
we have

Jx)=1 5($2+y2—a2)k (1)

T

where I is the current density (Am2) and a is the radius of the magnet,



see Fig. 1. This form of the current density ignores the endcaps and is only
valid when the length of the magnet is significantly larger than a. Then we
may obtain the vector potential via (for any basic result of classical electro-

magnetism, please see [7])

The integral over y' may be done using the delta function to get

Ax) ok / x'dx'dz'
X) =
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(3)
To find the magnetic field, we must take the curl of the vector potential.

We may also do the integral over dz' from 0 to [, the length of the magnet

to get
B(x) poli /a da'x’' (y— az—x’Q) [ — 2 N >
X) = —
21a J-a F—2? V2 =20z+F F
polj (o da'z' (x — z') -z 2
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where

F=2>+y*+ 22 +a®> — 222" — 2yVa2 — 22 (5)

We note that the magnetic field has no component along the axis of the
cylinder. Also, we note that since the integrand of the magnetic field in the

i direction is nearly odd; this component of the magnetic field is, in general,
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small. Indeed numerical calculations verify that it is almost neglegible. Thus
the field will be almost perfectly in the j direction. The remaining integral
can not be done in general, however if we consider the field on axis of the

cylinder, we get

— ol l— =z z .
B(0,0,z2) = +
N N (e AV b

which is almost perfectly constant over the middle region of the cylinder as

(6)

long as the length is significantly larger than the radius squared. When the
field is plotted as a function of distance along the horizontal and vertical
axes, we get a region of uniformity in the center as we would expect. See
Fig. 2, which is plotted using the numerical simulation about to be discussed

but which agrees completely with the analytical results above.
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Fig. 2. Magnetic field strength as a function of distance in the horizontal

and vertical directions of the cosine magnet. The current has been adjusted to give a



central value of B near 2.5mG. This plot is for a magnet of length 1.5m and of radius
0.25m with a shield radius of 0.3m, see Fig. 1. The region of uniformity in the center is

where an experiment could be performed.

3 The Superconducting Shield

The boundary condition at the surface of a superconducting shield is the
vanishing of the vector potential. In effect, we induce a current on the shield
whose vector potential exactly cancels that of the magnet at the surface of
the shield. This induced vector potential changes the magnetic field inside
the magnet. The induced current is

4T

J(x) = %A(x)(s (2% +y* - ?) (7)

where b is the radius of the shield, see Fig. 1. Again, this form of the current
density is only valid if the length of the shield is significantly larger than its

radius. We find the vector potential via the same means to get

A(x) =

otk / H(2, 2)dx'dz’

M
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where
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where

G = Z/2 + a2 + b2 - 2x/x// . 2\/[)2 _ le\/GZ — 2 (10)

The magnetic field is the curl of the vector potential, thus

ol / J(a', 2") [(x —a')j— (y —Va?— SU’Q) i] dz'dz’

= T
dma [x2 +y2 4 22 402 + 22 — 222" — 222 — 2yvVa? — x’2] ?

(11)

B;(x)

and the total field is just the superposition of the two fields,

Biota (x) = By(x) + B(x) (12)

When the relevant integrals are numerically computed, we find that the
presence of the shield does not significantly change the uniformity properties
of the cosine magnet to the level of one part in 10*. This is true as long as
b —a > 3cm. The dimensions of the magnet can be adjusted to achieve a
uniformity of one part in 10% over the required region of space with the shield

present.

4 Numerical Simulation

A real EDM experiment must incorporate individual wires and penetrations
in the cylinders. Such complications requires numerically solving the Poison

differential equation for the vector potential



VA = — ] (13)

and then taking the curl to get the magnetic field, the endcaps are now
included. The superconducting shield is incorporated by the boundary con-
dition that the vector potential at the shield must vanish. This procedure is
readily implemented using numerical techniques for solving partial differen-
tial equations. Only ten wires are required to make the difference between
the above calculation and the numerical model totally insignificant.

We define the uniformity U to be

[B(r.,0,1/2) — B(0,0,1/2)]°  [B(0, L./2,1/2) — B(0,0,1/2)]°
3B2(0,0,1/2) 3B2(0,0,1/2)

[B(0,0,1/2 +r.) — B(0,0,1/2)]?
3B%(0,0,1/2)
in terms of the magnetic field B(x,y, z), where L, and r, are the height

U? =

(14)

and radius of the cell. For different sizes of the magnet, shield and region
of uniformity (where an experimental cell would be placed), the uniformity
was calculated with the numerical model. Using this data, is was possible
to derive an empirical equation for the uniformity U given the radius of the

magnet r,,, radius of the shield r, and length of the magnet and shield L,,

U = exp (13.45L, + 1.37r, — 13.1L,, — 34.4r,, — 24.59) £ 66.7%  (15)

This equation is valid as long as the independant variables are of reasonable

magnitude (greater than 10e¢m and less than 3m) and the configuration is
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possible, see Fig. 1. The uncertainty arises from many factors such as inac-
curacies in the solution of Poison’s equation and in curve-fitting techniques.
This equation is a useful guide to anyone interested in manufacturing a co-
sine magnet with a superconducting shield. It gives a simple estimate of the
field uniformity for a particular configuration in a straightforward manner.

The needs for the EDM experiment are a field of 1mG with a deviation
of the order of 1uG over a cylindrical region 20e¢m in length with a 10em
diameter. If the input current density is I = 1Am™2, both cylinders are
1.5m in length and the radii are 0.3 and 0.6m respectively, this field profile
is achieved even in the presence of the superconducting shield.

Further simulations were carried out which included one or two holes in the
shield, with cylindrical superconducting pipes leading to them, of a diameter
and length of 12¢m for leads necessary for the experiment, see Fig. 1. In
both cases, the program showns that the deviations of the field to the case
of no holes is of the order of tenths of microgauss. Thus, holes in the shield,
with superconducting pipes do not influence the field much.

It is of considerable interest for the EDM experiment to know what effect
the penetrations in the shield have upon external field leakage. If a substan-
tial leakage is detected, the SQUID’s may not be able to measure the tiny
fields which constitute the experimental signal. If B, is the magnitude of
the field at the end of the superconducting pipe of one of the two symmetric
penetrations and B(d) is the magnitude at a distance d from the end of this
pipe towards the center of the magnet, then we define the attenuation length

of the field magnitude d, via
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B(d) = Bye %/ (16)

Simulations were conducted with different diameters of the two penetrations
s (the length of the superconducting pipes leading to the penetrations were
of fixed length 9.6¢m) and an empirical relationship between dy (cm) and s

(cm) was discovered

do = 4.241n(0.278s + 1) (17)

This shows that the distance for the field to drop in magnitude by a factor e,
the attenuation length, increases with the diameter of the penetrations. As
expected, when the penetrations are not there (s = 0), the attenuation length
vanishes and we have no leakage fields. However, an order of magnitude
reduction in B is achieved (for s =5 c¢m) in 39.5 c¢m, a significant distance.
Therefore, the external field shielding outside the superconducting shield

must eradicate most of the fields.

5 Conclusion

The cosine magnet can produce a magnetic field for the Los Alamos EDM
experiment with the required uniformity over a desired region of space. The
primary idea is to make the magnet sufficiently large. A formula which quan-
tifies "sufficiently large” was presented as equation (15) and demonstrates the
dimensions are still practical. Penetrations and the presence of a supercon-

ducting shield do not influence the uniformity properties of the cosine magnet
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to an appreciable degree. However, penetrations greatly weaken the shielding

efficiency of the superconducting shield.
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Figure captions:

Fig. 1: The experimental schematic of the EDM experiment.

Fig. 2: Magnetic field strength as a function of distance in the horizontal
and vertical directions of the cosine magnet. The current has been adjusted
to give a central value of B near 2.5m(G. This plot is for a magnet of length
1.5m and of radius 0.25m with a shield radius of 0.3m, see Fig. 1. The region

of uniformity in the center is where an experiment could be performed.
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Better quality picture of Fig. 1.
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