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Abstract

We use tangles in constructing a new notation for knots based on
Conway’s knot notation. The advantages of and basic manipulation al-
gorithms for the new notation are given. This new notation allows the
construction of a closed braid and closed plait representative for any given
knot. The necessary increase in the number of crossings due to this con-
version is much smaller than in previously known methods. This algo-
rithm runs in O(n) time whereas all previously known algorithms run in
O(n2) where n is the number of crossings in the knot diagram. With the
given methods, this notation is useful in computer manipulation of knots,
particularly tabulating, enumerating and computing invariants of knots.

1 Introduction

Knot theory has gained tremendous momentum from proofs that certain mathe-
matical objects are ambient isotopy invariants of knots. Such proofs and general
statements about knots form a large part of knot theory but in applications of
knot theory, actual computation of these objects (for example the Jones polyno-
mial) is often necessary. Therefore, it is important to have a practical method
of computation for such invariants. Some invariants can only be calculated by
algorithms whose computation time increases exponentially with crossing num-
ber, thus rendering them practically useless for all but small knots. There exist
only a few invariants which may be calculated easily and quickly for all knots.

Because it is so laborious to compute many interesting properties of a par-
ticular knot, the use of computers is essential. However, if a computer is to
be used, the search for an efficient algorithm becomes important. The pivot
of all algorithms is the form of the input. For many physics calculations, for
example, the choice of coordinate system often allows far greater simplification
of the calculations than a change in computational procedure. Therefore, while
the algorithm is important, a good notation for knots is paramount. Currently
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there are two different systems of “knotation” (the term was coined by John
Conway in a popular lecture with this title) that are widely used: Conway’s [5]
and Dowker and Thistlethwaite’s [6].

The Dowker-Thistlethwaite code for a knot is a series of numbers which
indicates the order in which crossings are encountered when the knot is traversed
in the direction of its orientation. This code is very compact in that only a few
numbers are required to name large knots. Implemented algorithms to calculate
most invariants from this code exist. The main application of this code is in the
computer-assisted tabulation of knots [15]. Conway’s knotation relies on setting
up templates for knots and inserting standard knot pieces called tangles into the
vertices of the template. This knotation is quite intuitive since the geometrical
aspects of the knot projection can be immediately visualized.

In this paper, we will introduce a new knotation based on Conway’s. We
prove that all knots may be represented by it, give an algorithm to place a given
knot into this notation and present a traversal algorithm which will calculate
certain features of the knot. An algorithm is then given to obtain a plait and a
braid, the closures of which are ambient isotopic to any given knot in the new
notation.

2 Tangles

2.1 Definition and Partition

Consider the 3-ball B3, choose 2n points on its surface, which is the 2-sphere
S2, and call the set of these points P . Attach n polygonal curves to the 2n
points such that: (i) each curve intersects S2 in exactly 2 points in P , which are
its endpoints, (ii) exactly one curve may begin or end at any one point in P and
(iii) no curve may intersect another. If the set of these curves is T , then we will
call the set

(
B3, T

)
an n-tangle. In particular, we will focus on 2-tangles and so

whenever we skip the n, it will be understood that we mean n = 2. Note that
the requirement that the curves be polygonal excludes any wild tangles, where
wild is to be understood in the usual knot theory sense. Two tangles are called
equal if they are isotopic without moving the points in P .

A tangle can be visualized readily by choosing the four points (named ac-
cording to the cardinal points of the compass)

NE =
(

0,
1√
2
,

1√
2

)
, NW =

(
0,− 1√

2
,

1√
2

)
(1)

SE =
(

0,
1√
2
,− 1√

2

)
, SW =

(
0,− 1√

2
,− 1√

2

)
(2)

on the unit sphere, which will be our canonical B3, see figure 1. Even though
tangles are, by definition, three dimensional objects, we will work with their
diagrams in the two dimensional plane as if the diagram is the tangle. The fact
that a projection in which there are at worst double points always exists for a
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Figure 1: The 3-ball and the four points on its surface which form the endpoints
of the two polygonal curves necessary to define a tangle.

tangle follows from the corresponding theorem about knots (we understand the
term “knot” as inclusive of links with an arbitrary number of components).
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Figure 2: The elementary tangles.

We shall find it convenient to partition the set of all possible tangles into a
few categories: elementary, integral, fractional and rational. The simplest are
the elementary tangles, of which there are four. These are best introduced by
displaying them in figure 2. Note that we have not drawn B3, it should however
be understood to be present. The reason for naming them as they have been
will become apparent later on. Note that the literature disagrees on which of
the two tangles ±1 is to have the minus sign. This is a matter of convention and
has no serious consequences (we follow the convention introduced by Conway).

The other types of tangles can be most readily defined in terms of combining
the elementary ones in some way. To do this, we shall define two ways of adding
tangles. Following Conway, we denote a general tangle by an “L” shaped symbol
within the three ball and we also sketch the ends of the two curves by which
tangles may be attached to each other. In this way, we define the horizontal
sum + and the vertical sum ⊕ in figure 3.

In what follows, we shall use a superscript to denote of which type a partic-
ular tangle t is; for example an elementary tangle t would be denoted by t(e).
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A + B ≡
A B

, A⊕B ≡
A

B

Figure 3: Tangle addition.

An integral tangle t(i) and a fractional tangle t(f) will be defined in terms of the
elementary tangles ±1 by

t(i) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
t factors

(3)

t(f) = 1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
t factors

(4)

The negative versions are, of course, the sums of −1 tangles instead of 1 tan-
gles. A rational tangle t(r) can then be defined in terms of a sum of integral and
fractional tangles. The definition of the sum differs if the number of tangles j in
the sum is even or odd, this is because the definition requires an alternate sum
between integral and fractional tangles (and the two methods of addition) which
always ends in an integral tangle being added horizontally. This is because the
set of rational tangles may be classified if this restriction is imposed; the classifi-
cation scheme is outlined in the next section. The integral tangles, including the
last, may be zero and the fractional tangles may be infinite. If any component
tangles, except the last one, are 0 or ∞ though, they may be removed from the
sum and the terms immediately preceding and following the removed term may
be added together to shorten the sum, while preserving isotopy.

t(r) =
{

a(i) ⊕ b(f) + c(i) ⊕ d(f) + · · ·+ z(i) j odd
a(f) + b(i) ⊕ c(f) + d(i) ⊕ · · ·+ z(i) j even

(5)

Note that the set of elementary tangles is a subset of both the integral and
fractional tangle sets which are subsets of the rational tangle set.

2.2 Classification of Tangles

We may denote a rational tangle by giving its integral and fractional factors in
order. Thus a sequence of integers t(r) = (a1, a2, . . . , ai) defines any rational tan-
gle. Note again that the identity of the tangle factors is decided by requiring the
last in the sequence to be integral. Given a rational tangle t(r) = (a1, a2, · · · , ai),
we may associate with it an extended rational number E(t(r)) = α/β, where α
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and β are integers including zero. We say an extended rational number because
this allows for 1/0 = ∞, the inclusion of which extends the rational numbers.
We calculate E

(
t(r)

)
by the continued fraction

E
(
t(r)

)
= ai +

1

ai−1 +
1

ai−2 · · ·+ 1
a1

(6)

Conway [5] was able to deduce that two rational tangles are isotopic if and only
if the associated extended rational numbers were equal; this is called Conway’s
Basic Theorem. The first published proof may be found in [4] but a more intu-
itive proof was given by Goldman [8]. Thus Conway’s Basic Theorem classifies
rational tangles in a simple algorithmic manner.

In particular, the fractions associated with the elementary tangles are their
numerical names: 0, ±1 and ∞. The fraction for an integral tangle t(i) is t(i)

and for a fractional tangle t(f) is 1/t(f). It is clear now why these tangles were
named as they were.

By equation 6, it is easy to calculate the fraction associated with a given
rational tangle. Given a fraction, it is also possible to decompose it into appro-
priate factors, thereby constructing the rational tangle associated with it. This
may be accomplished using Euclid’s algorithm. This concludes our review of
previous work on tangles and the rest of the paper is new work.

3 Knot Notation

Tangles were invented in an effort classify knots (they may be used to classify
two-bridge knots via the correspondence with the extended rational numbers
[11]) and so we must have a method to combine tangles to make knots. Con-
way [5] showed that any knot may be obtained by substituting several rational
tangles into the vertices of basic polyhedra. A polyhedron, in the sense of Con-
way, is an edge-connected 4-valent planar map and it is basic if, in addition, no
region (including the infinite region) has just two vertices. Conway constructs
the 8 different basic polyhedra necessary to denote all prime knots up to and
including 11 crossings [5].

Conway was able to deduce certain symmetries and functional relationships
in this notation that lead him to discover what is now known as the Alexander-
Conway polynomial. If one wants to give the construction of a particular knot,
all one has to do is to give the polyhedron and specify the tangle fractions to be
substituted into the vertices. The beauty of using the basic polyhedra is that
small knots may be named quite efficiently. Moreover, by Conway’s research,
a complete list of knots in this notation is available up to and including 11
crossings. However, the notation begins to get cumbersome for larger knots.
First, it is not easy to see how a knot is to be fitted into the basic polyhedra
and there is no method given to determine what the smallest polyhedron is
that a given knot can be fitted into. Second, if larger polyhedra than the eight
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polyhedra given by Conway are needed, no method is given to construct these
and because of the lacking symmetry it is difficult to determine them. We would
like to remedy these drawbacks by changing the notation slightly.

We will give a basic polyhedron, which we will call the universal polyhedron,
that can be scaled up or down very easily as needed. It is much easier to
insert a knot into the universal polyhedron because of its internal symmetry
and also because we only need elementary tangles and not rational tangles as
we did before. We are able to show an upper bound on the size of the universal
polyhedron for a specific crossing number so that we do not use an unnecessarily
large version of the polyhedron to denote a knot.

After establishing these basic properties, we will find that the structural
symmetry and scaling properties of the universal polyhedron allow us to give a
general algorithm for generating a closed braid (or closed plait) representative
of the knot. Finally, we are able to show that this braid generation algorithm
is, in some sense, better than existing algorithms.

3.1 The Universal Polyhedron

Figure 4: The polyhedron P (i, j)

The universal polyhedron, denoted by P (i, j) is shown in figure 4. It is a
prototype for a knot projection. The circles will be called vertices and the lines
connecting them edges. The vertices are arranged into i rows of j vertices each.
Each vertex can thus be labelled by its row and column index. Each vertex is
connected to four of its neighbors. Usually these are the neighbors (1) above,
(2) above right, (3) below and (4) below left except on the boundaries of the
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Figure 5: The polyhedron P (2, 2)

polyhedron. We draw a single arc directly above and below the collection of
vertices to connect the extreme vertices of these two rows. All other arcs go
on top of this diagram to connect a row to the row below. To be specific, the
polyhedron P (2, 2) is shown in figure 5.

While P (i, j) denotes the whole polyhedron and specifies the number of
rows and columns, pkl specifies a particular vertex in row k and column l. In
what follows, we will substitute rational tangles into the vertices to yield a knot
projection. Since a rational tangle may be specified by a single extended rational
number, pkl takes an extended rational number value. This can be completely
specified by giving all pkl a value, which may be arranged into a matrix form,

P (i, j) =




p11 p12 · · · p1j

p21 p22 · · · p2j

...
...

. . .
...

pi1 pi2 · · · pij


 (7)

For any knot K, if we have determined a matrix P (i, j) that gives rise to
a knot projection of a knot ambient isotopic to K, we call this matrix the
knot matrix of K. Interpreted in the above manner, it is clear that any matrix
with extended rational numbers entries gives rise to a knot. Since this is true for
rational tangles, it is true for any subset of the rational tangles, in particular the
elementary tangles. Thus if all pkl take a value from the set E = {0,−1,+1,∞},
the result is also a knot projection. We now show that every knot has a knot
matrix.

3.2 Any Knot can be Denoted by the Universal Polyhe-
dron

Theorem 1 Every knot has a knot matrix.

Proof. We observe that if all vertices take a tangle value of ±1 or 0, then
the polyhedron drawn is the canonical closure of the braid represented by the
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vertices and the internal edges of the polyhedron. Alexander’s theorem states
that every knot may be represented by a closed braid [1]. As every closed n-braid
of c crossings may be drawn in the polyhedron P (n, c) by the above observation,
we conclude that every knot has a knot matrix. �

From the above discussion, it is clear that two distinct knots have distinct
knot matrices and two ambient isotopic knots may or may not have the same
knot matrices. Having established that we can always denote a knot in this way,
we would like to have a bound on the size of the required universal polyhedron
to denote a knot of n crossings.

Theorem 2 Let K be any knot given by a diagram D(K) with n crossings, then
we can always find a square elementary tangle valued knot matrix P (i, i) such
that P (i, i) = D(K) with i ≤ 2

√
n.

Proof. Consider an oriented knot diagram D(K) with n double points. Label
its double points and edges with the positive integers in the order of its orien-
tation starting at an arbitrary point. We associate to each knot diagram D(K)
a graph G(D(K)) in the following way. Each crossing point becomes a vertex
in the graph and is labelled by the sign of the crossing (a right-handed crossing
obtains a label 1 and a left-handed crossing a label -1). We draw a directed edge
(i, j) between vertices i and j if and only if there exists a directed arc in D(K)
from double point i to double point j. This edge is labelled by the number of
the arc in D(K). This gives an edge and vertex labelled 4-regular planar graph
G(D(K)) with n vertices and 2n edges. We note that we may easily reconstruct
a knot diagram isomorphic to D(K) from any planar drawing of this graph.

Consider the list L of all 4-regular planar graphs on n vertices. If we generate
all possible labellings and orientations of each of these graphs, we will obtain
every graph arising from a knot diagram of n double points and many others not
arising from any knot diagram. All of these graphs have the same vertex set and
an edge set of 2n edges. The adjacency matrix of any one of these graphs will
contain exactly four entries of value 1 in each column and row. All other entries
will be zero and the matrix will be symmetric. The list L may be enumerated by
generating all possible such matrices. Note that any two matrices which differ
by a permutation of the rows and the columns can be obtained from each other
by a renumbering of the vertices and thus correspond to an ambient isotopic
knot diagram. Such duplicates are to be removed.

We now consider the edges arising from inserting double points into a poly-
hedron P (i, i). Note that we are focusing on a square polyhedron of side-length
i. Clearly all possible ways to fill P (i, i) will generate a 4-regular planar graph.
If we add over and under-crossing information and an orientation, we obtain a
graph of a knot diagram. Consider the vertex (p, q) in P (i, i). If we change it
from a double point to a 0 tangle or to an∞ tangle, we change the edges in the
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following way.

E0 → E −
{

{{(p, q), (p− 1, q)}, {(p, q), (p + 1, q)},
{(p, q), (p− 1, q + 1)}, {(p, q), (p + 1, q − 1)}}

}

+

{
{(p− 1, q), (p− 1, q + 1)},
{(p + 1, q − 1), (p + 1, q)}

} (8)

E∞ → E −
{

{{(p, q), (p− 1, q)}, {(p, q), (p + 1, q)},
{(p, q), (p− 1, q + 1)}, {(p, q), (p + 1, q − 1)}}

}

+

{
{(p− 1, q), (p + 1, q − 1)},
{(p− 1, q + 1), (p + 1, q)}

} (9)

These formulae hold except at the boundaries where we must take the numbers
mod i and in addition take care of the bottom and top line. This operation
thus decreases the number of crossings by one and the number of edges by two.
These replacement formulae also make apparent that the 0 tangle represents a
horizontal connector and the ∞ tangle a vertical connector between crossings.

We see that if we start from a suitably large polyhedron we can get to any
given graph G(D(K)) by such replacements taking care that we get the edges
in the given edge set. We note that since edges are deleted and added in pairs
by this process, we need one row and one column in between every neighboring
pair of crossings. By making such replacements and by permuting the crossings
among each other, we can clearly form any adjacency matrix in the above list.
The polyhedron matrix looks like the configuration given in equation 10,


× � × � · · ·
� � � � · · ·
× � × � · · ·
...

...
...

. . .
...


 (10)

where an empty box is to be understood to be filled by a 0 or ∞ tangle and
a cross is a ±1 tangle. This configuration with 2l rows and 2l columns has l2

crossings. Thus we conclude that the polyhedron P (2l, 2l) can contain any knot
diagram of l2 crossings up to Reidemeister moves. This proves the theorem. �

Note that theorem 2 was proven for elementary tangles substituted into
the vertices of the universal polyhedron. We find in practise that by using
non-elementary rational tangles the size of the polyhedron can be reduced sig-
nificantly. Furthermore, we note that in practise it is rare for a polyhedron of
the maximal size proven to be necessary.

3.3 Finding the Knot Matrix

We wish to find the knot matrix for a given knot projection. Since this is an
algorithmic question, we must ask in what fashion the knot is already given. By
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Alexander’s Theorem, every knot can be represented by a closed braid. If we
have the knot given by its closed braid representative, it is trivial to put it into
the universal polyhedron as the polyhedron is nothing more than braid closure
if the tangles take on the values ±1 and 0. If the knot is given in Conway’s
notation, translation formulae are given in the appendix of this paper. Both of
these methods of finding knot matrices can be completely automated.

Generally, however, a knot is given by one of its projections onto the plane.
By the above observations, we could simply execute Alexander’s [1] or Vogel’s
[16] algorithm to find a closed braid representative of the knot projection and
place this in the universal polyhedron. This unnecessarily increases the crossing
number however and makes the use of a large polyhedron necessary.

We note that by theorem 2, we could enumerate all possible polyhedra sat-
isfying the bound and test via graph isomorphism whether the generated knot
matrix gives the knot at hand. This algorithm is simple and will terminate in
a very small knot matrix. It is however not practical as the list includes an
exponentially growing number of members.

In addition to these methods of producing a knot matrix, we add another
below which produces a knot matrix without increasing the crossing number
and using a reasonably sized polyhedron. This method requires the production
of the matrix associated to the knot diagram. After this has been done by a
human, the rest of the algorithm may be done by a computer.

Algorithm 1 Input: A knot diagram D(K) with n crossings. Output: A knot
matrix for the given projection.

1. Obtain G = G(D(K)) and construct an i by i knot matrix M where
i = �2√n	. Fill all the entries with both an odd row and odd column
index with a 1 tangle and leave all the others empty. Number the vertices
across the rows and down the columns in order.

2. Fill the empty entries in M with 0 and with∞ tangles in such a way that
the corresponding edges to be added to the graph G′ associated to M are
a subset of the edge-set of G. The fact that this is possible is stated by
theorem 2.

3. The previous step has created a knot matrix whose associated graph is
isomorphic to the unlabelled and undirected version of G. By the con-
structed isomorphism, we now add the orientation and labelling to G′.
The end result will be a knot matrix for the knot K.

3.4 Getting Information about the Regions of the Plane

We will now assume that the knot of interest is given in our matrix notation
with pkl ∈ E . We will now give an algorithm that will give us information
about the regions into which the knot diagram divides the plane. The number
of regions into which the knot projection partitions the plane is important in a

10



few applications such as the braiding algorithm that is described later in this
paper.

We distinguish between regions of the plane and sections of the polyhedron.
By regions of the plane, we mean those regions into which the knot projection
divides the plane. By sections, we mean those regions into which the universal
polyhedron would divide the plane if all vertices were filled with a 1 tangle.
Each vertex has exactly one section lying to its right in the polyhedron and
thus we may label all these sections by the row and column indices of the
associated vertex. Only two sections are not indexed by this method, these are
the two sections with j vertices directly on the top and bottom of the matrix
construction. These will be labelled by the pairs (0, 1) and (j + 1, 1). Thus the
sections may be represented by a matrix. If the entries of this matrix are made
to take integer values we may count the number of regions by the following
algorithm.

Algorithm 2 Input: A knot matrix. Output: A matrix describing the regions.

1. We need a counter, k to count the regions. Initialize k to 1. We have
a matrix Spq which will store the number of the region that the section
(p, q) belongs to. A 0 or an ∞ tangle connects two sections and thus they
belong to the same region. Each position in the matrix S belongs to one
section so that in the end the matrix S gives complete information which
region each section belongs to and in particular how many regions there
are. Initialize all elements of S to “unmarked” and p = 0 and q = 1.

2. Begin on the boundary of section (p, q) at the far left. For counting regions,
the orientation of the knot does not matter, therefore follow the boundary
to the right. Put Spq = k.

3. We follow the boundary of the sections marking each new section with the
integer k.

4. We continue to follow the boundary until we reach the point of origin.

5. We search the matrix for an unmarked section. If there exist unmarked
sections, put k ← k +1 and choose one of the sections as our new starting
section and choose a point upon its boundary as our new starting point.
Then, we repeat the algorithm from step 2, marking the section with k.

6. If all sections are marked, the algorithm is finished. k is clearly the number
of regions. Note that the infinite section is included in this labelling as
section (i, j). Furthermore, since all connected sections are labelled with
the same integer, we have a complete knowledge of where the regions lie.

The algorithm considers each vertex exactly twice and therefore the com-
plexity is O(n).
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3.5 Getting Information about the Components of the
Knot

This new notation can be readily used in calculating some invariants of the
knot. For example, to calculate a polynomial invariant for which we have a
state model (the Jones polynomial for example [9]), we simply replace each ±1
tangle by a 0 or ∞ tangle in all possible ways to yield all possible states of
the knot. If a knot has n double points, this means 2n states. We associate
an algebraic factor with the way in which this replacement is made and then
multiply it by an algebraic factor depending on the number of unknots left.
All these contributions are added and yield a polynomial invariant of the knot.
The key is to be able to calculate the number of remaining unknots. We now
give an algorithm to calculate the number of components in a knot given in our
notation. This would provide the number of remaining unknots. By combining
the bounds on the size of the polyhedron and this calculation, it is clear that
our notation is suitable for the enumeration of knots and detection of duplicates
in the enumeration. It could thus be used to find a table of all distinct prime
knots up to a certain number of crossings.

Algorithm 3 Input: A matrix describing a knot in our notation. Output: A
matrix giving information about the location and number of the components of
the knot.

1. Each vertex has four points in which the two polygonal curves intersect
the 3-ball that denotes the volume taken by the tangle. These are shown
in figure 1 and named NW , SW , NE and SE. We initialize a matrix
Cijk where i and j give the vertex and k counts over the four points NW ,
SW , NE and SE at that vertex. We put Cijk = 0 for all i, j and k. We
need a counter m that will count the components. We initialize m = 1.
We initialize the current point to be i = j = 1 and k = NW , i.e. we start
at the extreme top left of the universal polyhedron.

2. Start at point k of the vertex (i, j) by putting Cijk = m.

3. We follow the orientation and not the boundary, as in algorithm 2, marking
each point on each vertex as we pass it in the matrix C with the counter
m.

4. When we reach the point of origin, we put m ← m + 1 and look for an
unmarked point (some Cijk = 0).

5. If there is an unmarked point, we take it as the current point and proceed.
We loop from step 2 to 5 until all points are marked.

This method calculates the number of components considering each point on
each vertex once, therefore the complexity is also O(n). Note that a matrix of
only 0 tangles contains i + 1 unknots and a matrix composed of only ∞ tangles
contains j unknots.
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Smaller polyhedra P (i, j) may be embedded in larger ones by filling in the
rest with 0 and∞ tangles. Conversely, if the configuration of the tangles is right,
we may delete rows and columns accordingly. For example, we may create an
extra row at the bottom or top of the matrix containing

(0 0 · · · 0 ∞)

and we may add an extra column at the left or right of the matrix containing
only 0 tangles. Likewise, such columns may be removed without changing the
knot type. Thus if a given knot can be expressed in the polyhedron P (i, j) it
can also be expressed in any polyhedron P (i′, j′) for which i′ ≥ i and j′ ≥ j.
An internal row of 0 tangles splits the polyhedron into two parts each described
by the matrix above and below the row of zeros. Thus if two knots should be
described in a single diagram without touching, this is a way in which this may
be done.

4 Braiding a Knot

The motivating problem to start this research was to develop an implementable
algorithm to produce a closed braid ambient isotopic to any given knot. Some
algorithms exist but they all depend on topological deformations of some kind
and so are not immediately implementable [10] [3]. The best known algorithms
have been implemented [16] [17] but have complexity O(n2) for an n crossing
knot projection. They also give rise to braids with many more crossings than
necessary.

We shall present an algorithm that uses less crossings than any known al-
gorithm, will achieve its task by modifying the knot matrix and is immediately
implementable. It will also achieve the conversion with complexity O(n), in-
crease the number of crossings from n only sometimes (and then by only a few
crossings) and use a linearly bounded number of strings. There exists no al-
gorithm to calculate the braid index of the knot, i.e. the number of strings
which are at least necessary to describe a specific knot. Because of this, it is
not possible to say how close to the minimum the number of strings used is.

We note that there exist knots for which any closed braid representative
has more crossings than the minimal knot diagram; the knot 5.1 is the simplest
example of this [13]. If we are given the minimal crossing knot diagram of such
a knot, we must therefore increase the number of crossings in producing a closed
braid representative. A bound on this necessary increase is not known and so
we can not say how close to the minimum we are.

4.1 Closures of Braids

We have the notational armory now to discuss an algorithm to transform a
knot into a closed braid form. That this is in principle possible is assured by
Alexander’s Theorem [1] which states that any knot may be expressed as a
closed braid. There are two popular ways to close a braid: the canonical closure
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Figure 6: The (canonical) closure of a braid. In the braid group language, the
braid is ∆3 = σ1σ2σ1 and the knot is the Hopf link.

and the plait closure. In the canonical closure, which is used more often, one
numbers the strings in the braid on both the top and bottom consecutively from
left to right and connects the strings with the same number. In the plait closure,
one numbers the strings in the same way but connects each odd numbered string
to the string with the next even number. It is intrinsic to the definition of the
plait closure that the number of strings must be even. It is because of this severe
limitation that the plait closure is used infrequently; the literature reserves plait
closure almost exclusively for 4-braids. Both closure methods are illustrated in
figures 6 and 7.

Alexander’s theorem was proven by showing that every knot can be deformed
into a form where the knot loops around an axis (shown as point P in figure
6) a finite number of times without local maxima or minima with respect to
that axis. If we cut the string along the axis in one place, we obtain a braid.
The gluing back of the cut constitutes the canonical closure. Thus, as far as
the canonical closure is concerned, the finding of an appropriate axis is the
key. Having obtained a canonically closed braid which is equivalent to the given
knot, we may obtain a plait from it by considering the closure curves part of the
braid diagram and moving them into the middle of the braid diagram. Before
we proceed to illustrate the general algorithm, we give an example in the next
section.

4.2 An Example

For the rest of this section, we are going to work through an example of our
method. Consider the trefoil knot in figure 8. We have drawn an axis through
it by the following method: (1) We drew a line through the projection of the
trefoil which intersects every region of the plane at least once, (2) begins and
ends in the infinite region and then (3) assigned the under and overpasses of
the knot under and over the axis by traversing the knot from a random starting
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Figure 7: The plait closure of a braid. Note that there is potential conflict be-
tween orientations of the braid strings in the plait closure; it becomes impossible
to plait a braid in which all strings are oriented in the same way.

A

Figure 8: The trefoil knot with an axis for braiding it.

point (point A in the figure) while (4) assigning the passes alternately as we met
the crossings of axis and knot. Next we perform a coordinate transformation
from the knot reference frame (figure 8) to the axis reference frame in figure 9
by pulling the axis straight.

We can easily observe from figure 9 that the axis is valid; i.e. if we traverse
the knot starting at A we will travel around the axis without local maxima
or minima permanently in a clockwise direction. If we now cut the knot at
those points at which it over-crosses the axis and lay out the ends carefully to
either side, we shall obtain the braid σ−1

1 σ−1
2 σ−1

1 σ−1
2 shown in figure 10 (a).

To get back to the trefoil from this, we perform the canonical closure which is
identical to sealing the cuts made above. This is shown in figure 10 (b). This
knot has four crossings and is ambient isotopic to the trefoil thus there is some
inefficiency in our braid representation (note however that there exist knots for
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A

Figure 9: The trefoil knot as it appears after the axis has been straightened
from figure 8. For reference the point A has been labelled here again.

which the most efficient braid representation contains more crossings than their
most efficient knot projection [13]). We note that we may lift the arc labelled in
figure 10 (b) to remove one crossing. This move also removes a string and so we
obtain the braid of figure 10 (c). This braid has two strings and three crossings,
it is thus the most efficient representation of the trefoil as the trefoil must have
at least this many strings and crossings. We conclude that the closure of the
braid σ−1

1 σ−1
1 σ−1

1 is ambient isotopic to the trefoil knot. Note that we may
turn the entire figure 10 (c) about a vertical axis through its center and thus
obtain the result that the braid σ1σ1σ1 is ambient isotopic to the trefoil also;
this, finally, is the well-known braid representation of the trefoil knot. This is
the prototype for a general method which we shall develop below.

4.3 Platting a Knot

The diagram of a knot which is expressed as a closed braid may be naturally
divided into two parts: the braid and the closure. The most important feature of
the braid part, for our purpose, is the requirement that all strings be monotonic
increasing in the coordinate along the axis, that is they may only go side to
side and never double back on themselves. In this light, consider turning the
polyhedron P (i, j) clockwise by π/2. If the polyhedron does not contain any
∞ tangles, this is already a canonically closed braid. However, in general, the
polyhedron will contain ∞ tangles. Note that the rotation will make the ∞
tangles look like 0 tangles. In an effort to rid ourselves of the ∞ tangles, we
take the top string in the ∞ tangle and move it all the way to the bottom of
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Lift

(a) (b) (c)

Figure 10: The braid which is extracted from figure 9 by cutting the trefoil knot
at its over-crossings over the axis and laying out the ends is displayed in part
(a). The closure of this braid is part (b). If we lift the arc labelled in part (b)
we obtain the braid in part (c). See discussion in the text.

the knot diagram and move the bottom string all the way to the top. In this
way, we have created two extra strings in the braid which are closed in the plait
manner. If we do this for all∞ tangles, we will have a valid braid in the center of
the diagram but the closure mechanism will be a hybrid between the canonical
and plait methods. In order to rectify the situation, we move the strings which
are closed in a canonical manner into the center of the braid diagram, thereby
creating more strings and more crossings. Once this has been done, we have a
fully valid braid closed in the plait manner which is regularly isotopic to the
knot we started with. This is hard to visualize and so we give an example of
this algorithm.

Figure 11 shows the process of converting the unknot

U =
( −1 1
∞ −1

)
(11)

into the braid σ2σ
−1
4 σ3σ4σ

−1
5 σ−1

6 σ−1
4 σ−1

5 σ4σ6 closed in the plait manner. This
procedure is valid generally and clearly represents a readily implementable algo-
rithm for transforming a knot given in our notation into a plait. If the original
knot is given in the polyhedron P (i, j) and has k tangles of the ∞ type, then
the number of strings required in the plait is 2(i + k + 1) but the number of
crossings depends upon the exact configuration.

4.4 Laying the Axis

As mentioned before, the transformation of a knot projection into a canonically
closed braid centers around finding an appropriate axis for the string to wind
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Figure 11: The conversion of a knot into a plait.
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around. This was the central point of Alexander’s theorem which proves that
such an axis may always be found. A ready method for finding an axis is given
in the following algorithm.

Algorithm 4 Input: A knot projection given in our notation. Output: A knot
projection with an axis around which the knot winds without local maxima or
minima.

1. Run algorithms 2 and 3 to get the information about the regions and
components. Suppose that there are R regions and C components.

2. Choose two arbitrary points in the infinite region and call them A and C.

3. Draw a line L connecting A and C in such a way that the line intersects
every region at least once.

4. Choose a random point on each of the knot’s components and traverse the
knot in the direction of the orientation once for each component starting
at the chosen point. While traversing, label each intersection of L with
the knot alternatingly with a + or − sign starting with +.

5. Interpret each + crossing as an overcrossing of L over the knot and each
− crossing as an undercrossing of L under the knot. The line L oriented
from A to C is then a valid axis.

A C

B

Figure 12: The canonical axis of the braid through the polyhedron P (i, j). The
solid line applies when j odd and the dashed line is the short-cut that applies
when j is even.

It is clear that the algorithm may be applied to any polyhedron. We will
prove shortly that the line found is always a valid axis. Before we prove this,
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however, we draw attention to the crucial step of the algorithm, namely step 3.
This can done in various ways. One way is to draw a line over the polyhedron
such that the line intersects each section of the polyhedron at least once. Such
a line is shown in figure 12. This will clearly intersect each region at least once
and has the advantage that it is a canonical line that does not need to change
from knot to knot. This line is effectively hard-coded into the polyhedron and
will be the line we shall accept for practical use.

It is possible to minimize the number of crossings of the line with the knot
by solving the Hamiltonian cycle problem for a graph that has a node for each
region and an edge between adjacent regions. As this is currently only possible
in exponential time, we do not suggest this route. One may use heuristics for this
problem to achieve the minimum in most cases. We note at this time that the
minimization of intersections between the line and the knot is important because
it will turn out that the number of strings in the braid is equal to one-half times
the number of these crossings. We will find that with the canonical line, we can
calculate this number and it is linear in the number of crossings of the knot.
This is clearly an upper bound for the method focusing on Hamiltonian paths.
Having stated this caveat, we prove that algorithm 4 always yields a valid axis,
this essentially amounts to proving Alexander’s theorem.

Theorem 3 Given any knot matrix, algorithm 4 will find an axis about which
the knot is without local maxima or minima.

Proof. Alexander’s theorem [1] states that given a knot projection, it is possi-
ble to deform it with respect to a point P in the projection plane that after the
deformation a point A which travels along the knot in the direction of its orien-
tation will travel around the axis defined by P (the axis is a line perpendicular
to the projection plane intersecting it at P ) in a constant fashion, either clock-
wise or counterclockwise, for the entire circumnavigation of the knot. We wish
to do the opposite, namely to deform the axis around the knot projection to
achieve the same ends. We can imagine the process of laying the axis as akin to
sewing in which we move the needle up from and down onto the plane. Morton
[12] has constructed a similar method to ours which he calls “threading.”

The knot divides the plane into several regions. If the axis does not intersect
a particular region, the point A will change course while traversing the knot and
so the axis must intersect each region. It is however clearly only necessary for
the axis to intersect the region once. Choose a line in the plane which intersects
the axis. With respect to this line we can define an angular coordinate θ going
around the axis. As point A must travel around the axis in a constant fashion
it must, after it passes θ = 0, reach θ = π before it once again reaches θ = 0.
This shows that the axis, in the projection plane, must over and under-cross
the knot alternately with respect to A, i.e. the axis must alternately over and
under-cross the knot as seen by a point traversing the knot. This is precisely
the axis found in the algorithm and thus proves the theorem. �

20



4.5 Getting the Braid

Having obtained the axis, we must now put together all the pieces and construct
the braid. This will be done via the following algorithm.

Algorithm 5 Input: An axis L in a knot projection given in P (i, j) using our
notation. Output: A braid the canonical closure of which is regularly isotopic to
the given knot.

1. Consider an empty polyhedron P (i, j). Each edge can be thought of
emerging from the East side (remember that we labelled the endpoints
of the tangles NW, NE, SW and SE) of exactly one vertex. We therefore
label each edge by the triple (i, j, k) where i and j are the column and row
indices of the vertex and k is either NE or SE. So we represent the edges
as another matrix. Choose a point A on the knot.

2. All edges which under-cross the axis L are to be numbered in order starting
at point A and proceeding in the order reached if the knot is traversed
starting at A. Suppose there are k of these.

3. For each numbered edge, follow each edge around the knot until another
edge under-crossing L is reached. All edges encountered are to be labelled
with the same number as the original edge.

4. When all edges are numbered, we have identified the individual strings of
the braid and numbered them in order.

5. Traverse the knot again starting at point A and extracting which labelled
string passes over which other labelled string at each vertex containing a
±1 tangle.

6. The result is a list of crossings between strings “colored” with the colors
1, 2, · · · , k. Thus the output of the previous step is the braid in its colored
braid group representation. This can be converted into an Artin braid
word easily. If a colored generator requires two non-adjacent strings to
cross, the top string must first move behind all the intermediate strings
before the required crossing can be realized.

7. We assess the string labels around the knot and calculate the permutation
associated with the braid which winds around our axis. If this permutation
is different from the permutation of the braid which we obtained in step 6,
the residual permutation must be added to this braid in the form of extra
crossings. In order to maintain isotopy, the permutation braid which is
appended must be entirely composed of inverse generators.

The number of crossings is increased in some circumstances by a small
amount in step 7 of the algorithm. Steps 6 and 7 is not a deficiency of al-
gorithm 5 but a fundamental necessity as mentioned previously. Crossings are
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only added when it is necessary for the permutation of the braid. The fundamen-
tal braid word ∆n = σ1σ2 · · ·σn−1σ1σ2 · · ·σn−2 · · ·σ1σ2σ1 of length n(n− 1)/2
represents the maximal permutation and so the number of crossings is increased
by n(n−1)/2 at most. It is furthermore possible, by the way the extra crossings
are computed, that some crossings may be cancelled over the free group or by
more sophisticated reduction methods [2].

It is clear from Alexander’s theorem [1] that this algorithm works. The
number of strings used is the number of positive crossings of the axis with the
knot which is equal to half the number of crossings. The number of crossings of
the axis with the knot is

Nc =
{

(i + 1)j j even
(i + 1)j + i− 1 j odd (12)

where �x	 is the greatest integer less than x. An analysis of the possibilities
in oddness and evenness of i and j reveals that Nc is always even which is
good since we must have an equal number of positive and negative crossings.
Therefore, the number of strings of this braid is Nc/2 which scales linearly with
n.

Algorithm 5 therefore finds a braid with a number of strings which scales lin-
early in the size of the knot matrix. The number of strings may be reduced after
the braid has been found using Markov’s theorem, even though no algorithm
for such a reduction exists.

The determination of the regions, the laying of the axis, the labelling of
the axis crossings, the labelling of the edges and the extraction of the double
point information all take a time proportional to the number of vertices in
the polyhedron. The building of the braid from the crossing information takes
time proportional to n. Therefore the entire algorithm to proceed from a knot
projection to a canonically closed braid has complexity O(n). This algorithm
succeeds in being readily implementable and in constructing a braid which is
reasonably small. It is more efficient both in computing time and crossing
number than the best known algorithm by Vogel [16] which runs in O(n2). This
algorithm increases the crossing number by n2 − 3n + 2 at most but uses a
number of strings equal to the number of Seifert circles in the knot projection.
Thus while our algorithm is faster and produces a braid with less crossings, it
nevertheless produces a braid with more strings than Vogel’s algorithm. The
translation algorithm has been implemented by the author as part of a larger
knot theory program called BraidLink which is available from the author.

A Translating from Conway’s notation to the
universal polyhedron

If the knot is given in Conway’s notation [5], we may make the translation into
our notation by fitting the appropriate basic polyhedron into P (i, j) with a
specific choice for i and j. Since Conway uses integral tangles for his notation,
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this method will yield a matrix with integer number entries. In the equations
below we write Conway’s notation and ours in correspondence, the letters imply
integral tangles and the operator M is to be understood as the mirror reflection
operator. The equations may be verified readily by drawing the diagrams, they
have been omitted here for reasons of space.

1∗a = (a) (13)

6∗a.b.c.d.e.f =
(

a c e
M(b) M(d) M(f)

)
(14)

6∗∗x.a.b.c.d.y =




∞ a x
∞ M(b) ∞
∞ c ∞

M(y) M(d) ∞


 (15)

8∗a.b.c.d.e.f.g.h =
(

a c e g
M(b) M(d) M(f) M(h)

)
(16)

9∗a.b.c.d.e.f.g.h.i =


 a d g

M(b) M(e) M(h)
c f i


 (17)

10∗a.b.c.d.e.f.g.h.i.j =
(

a c e g i
M(b) M(d) M(f) M(h) M(j)

)
(18)

10∗∗a.b.c.d.e.f.g.h.i.j =


 a c e 0 0 ∞

M(b) M(d) M(f) M(h) M(j) ∞
0 0 g i 0 ∞


(19)

10∗∗∗x.a.b.c.d.e.f.g.h.y =



∞ 0 a x
∞ M(e) M(b) ∞
∞ f c ∞
∞ M(g) M(d) ∞
y h 0 ∞


 (20)

11∗a.b.c.d.e.f.g.h.i.j.k =




a c e g i
M(b) M(d) M(f) M(h) M(j)

0 0 ∞ 0 ∞
0 ∞ M(k) 0 ∞


 (21)

Using integral tangles in our matrix notation makes the notation more com-
pact in that fewer rows and columns are needed to denote a knot but it also
makes it more complex since each matrix element may take many values. We
have described algorithms which assume that the matrix only takes on elemen-
tary tangle values, therefore we must have a method for separating out the
integral tangles introduced into the notation via equations 13 - 21.

Algorithm 6 Input: A matrix describing a knot in our notation in which one
or more elements are integral tangles. Output: A matrix describing the same
knot in which all elements are elementary tangles.
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1. Focus attention on the first integral tangle which is not elementary, sup-
pose this has value sk where s = ±1 is the sign and k is a positive integer
greater than one.

2. Create k−1 columns immediately after the column containing the current
integral tangle and fill each new vertex with a 0 tangle.

3. Suppose the current integral tangle is pmn = sk. Then set pmq = s for
n ≤ q ≤ n + k − 1.

4. Finally exchange the values of elements pm+1 n and pm+1 n+k−1.

It is easy to convince oneself, by drawing a few diagrams, that algorithm 6
will accomplish the decomposition. While the number of rows stays constant,
the number of columns may explode if there are numerous integral tangles of
high values in the matrix. However this algorithm will give us a ready means,
together with equations 13 - 21, to convert any knot given in Conway’s notation
into our notation.
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